Поиск
×
Поиск по сайту
Часть 3 из 33 В начало
Для доступа к библиотеке пройдите авторизацию
Как увидеть психику В прилагаемом к одной из марок магнитно-резонансных томографов видеоролике, демонстрирующем правила техники безопасности, показан человек, который подходит к аппарату с металлическим гаечным ключом в руке. Когда он оказывается в паре шагов от томографа, рука, держащая ключ, внезапно вытягивается вперед: зажатый в ней ключ указывает прямо на притягивающий его прибор. Следующие несколько секунд напоминают эпизод из мультфильма: человек борется за ключ, как будто в другую сторону его тянет незримый противник. Человек приближается к аппарату, и ключ в его руке трепещет, как флаг в аэродинамической трубе, пока не начинает выскальзывать из стиснутых пальцев, устремляясь к входному отверстию томографа. Человек хватает ключ обеими руками и отклоняется назад, но явно не может его удерживать. Инструмент вылетает из рук, попадая в трубу аппарата, где врезается в специально поставленный кирпич. Сила удара столь велика, что кирпич рассыпается на кусочки. Эти кадры должны показать, как опасно подносить металлические предметы к магнитно-резонансному томографу. По сути, этот аппарат представляет собой огромный кольцевой магнит. Создаваемая им сила притяжения примерно в 140 тысяч раз больше силы земного тяготения. Нетрудно представить, к каким последствиям приведет, например, попытка сканирования с помощью такого прибора организма пациента с кардиостимулятором. Однако если на теле человека и внутри него нет ничего металлического, магнитно-резонансная томография (МРТ), судя по всему, совершенно безопасна: вредных для организма последствий применения этого метода не отмечено. Поиски природы психики Первая известная карта головного мозга начерчена на древнеегипетском папирусе, датируемом 3000-2500 годами до н. э.29 Средневековая “клеточная” теория предполагала, что атрибуты человека (дух, мышление и другие) располагаются в соответствующих желудочках мозга. В начале XVII века Рене Декарт заложил основы представления, согласно которому психика существует в сфере, отдельной от материального мира. В соответствии с этим представлением головной мозг — это своего рода радиоприемник, связанный со сферой психики через эпифиз — единственный обнаруженный Декартом компонент мозга, имеющийся только в одном экземпляре, а не в двух, по одному в каждом полушарии. Картезианский дуализм оставался преобладающей концепцией не одно столетие. Но всегда на ходились ученые, утверждавшие, что психика и работа мозга — это одно и то же, и в течение XIX и первой половины XX века многие из них прилагали массу усилий, пытаясь начертить карты мозга. На помощь им приходила история: во время Французской революции появилось много голов для препарирования, а в Первую мировую войну — много раненых для обследования. Однако картирование вышло из моды, когда американскому нейробиологу Карлу Лешли удалось убедить большинство коллег в том, что высшие когнитивные функции представляют собой результат “массового действия” нейронов, а значит, не поддаются локализации. Психохирургия предполагала, что это не обязательно так, и современные технологии показывают, что местоположение активности, лежащей в основе механизмов мозга, можно установить точно. Сканирование мозга Магнитно-резонансная томография (МРТ, иногда называется ядерным магнитным резонансным сканированием — ЯМР) — основана на регулировании атомов в тканях тела электромагнитными волнами и дополнительным воздействием на них радиочастотных волн. Это вызывает выделение атомами энергии, специфически различающейся в зависимости от типа ткани. Сложная система программного обеспечения компьютерной томографии преобразует эту информацию в трехмерную картину любой части тела. Результат такого сканирования выглядит как рентгенограмма. Диффузионная тензорная визуализация — разновидность МРТ, основанная на измерениях интенсивности диффузии воды в волокнистых тканях. Она особенно подходит для выявления связей между различными участками мозга и, скорее всего, принесет много пользы при выявлении взаимодействия модулей мозга. Функциональная магнитно-резонансная томография (ФМРТ) позволяет дополнять схему принципиального строения мозга картиной участков наибольшей активности мозга. Для возбуждения нейронов нужны глюкоза и кислород, поступающие с кровью. Активация того или иного участка мозга сопровождается усилением притока этих веществ, и ФМРТ позволяет наблюдать те участки, куда кислорода поступает особенно много. Новейшие аппараты для ФМРТ позволяют сканировать мозг с частотой четыре раза в секунду. Чтобы отреагировать на внешний стимул, мозгу требуется примерно полсекунды, поэтому данный метод позволяет наблюдать вспышки и затухания активности, возникающие в определенных частях мозга в ответ на стимулы или в процессе выполнения заданий. Метод ФМРТ оказался самым информативным из всех современных, но он необычайно дорогой, и исследователям, занимающимся картированием мозга, нередко приходится ждать очереди, деля аппарат с врачами. Позитронно-эмиссионная томография (ПЭТ) позволяет делать примерно то же, что и ФМРТ, то есть отслеживать по потреблению “топлива” особенно интенсивно работающие участки мозга. Картины, получаемые с помощью ПЭТ, весьма отчетливы, но не достигают столь же высокого разрешения, как с помощью ФМРТ. Еще один существенный недостаток метода состоит в том, что он требует введения испытуемому в кровь радиоактивного маркера. Доза радиоактивности, требуемая для одноразового сканирования, ничтожна, но чтобы не подвергать здоровье добровольцев риску, им обычно запрещается проходить больше одного сеанса сканирования в год. Ближняя инфракрасная спектроскопия (БИКС) также дает возможность получать изображения, основанные на измерениях количества топлива, сжигаемого в определенные моменты времени разными частями мозга. Этот метод работает за счет облучения мозга слабыми инфракрасными лучами и отслеживания изменений количества света, отражаемого теми или иными участками. БИКС дешевле ФМРТ и, в отличие от ПЭТ, не предполагает использования радиоактивных веществ. Пока он не позволяет получать отчетливые картины происходящего в самой глубине мозга. Электроэнцефалография (ЭЭГ) основана на отслеживании волн электрической активности мозга, создаваемых ритмичным возбуждением нейронов. Эти волны претерпевают закономерные изменения, отражающие текущий характер активности мозга. Регистрация таких волн осуществляется с помощью электродов, закрепляемых на поверхности головы. Новейшие разновидности ЭЭГ позволяют считывать показания десятков расположенных в разных точках датчиков и сравнивать их, складывая единую картину изменений возникающей в мозге активности. При картировании работы мозга с помощью ЭЭГ часто используются так называемые вызванные потенциалы — регистрируемые пики электрической активности (потенциалы), возникающие в ответ на определенные стимулы, такие как слово или прикосновение. Магнитоэнцефалография (МЭГ) похожа на ЭЭГ тем, что также основана на регистрации сигналов, поступающих от ритмично возбуждающихся нейронов, но отличается тем, что здесь регистрируются не электрические колебания, а связанные с ними слабые магнитные импульсы. Развитие МЭГ по-прежнему затруднено рядом еще не решенных проблем, таких как слабые и легко перекрываемые сигналы, но потенциал этого метода огромен, потому что он работает быстрее других методов сканирования мозга и позволяет картировать изменения активности мозга гораздо точнее, чем ФМРТ или ПЭТ. Высокоэффективные методы сканирования головного мозга, такие как ФМРТ, делают возможным его исследование способами, о которых несколько десятилетий назад никто и не мечтал. Однако картирование мозга началось задолго до изобретения высокотехнологичных приборов для сканирования. Две основные речевые зоны, по-прежнему входящие в число важнейших ориентиров на карте коры больших полушарий, были обнаружены Брока и Вернике более ста лет назад. Ученым удалось сделать это, исследуя мозг пациентов, страдающих расстройствами речи. Они заметили, что речевые нарушения определенного рода сопряжены с повреждениями одних и тех же участков мозга. Зону, дающую нам способность к членораздельной речи, Брока открыл, препарируя трупы людей, при жизни (обычно после перенесенного инсульта) не способных внятно произносить слова. Классический случай, исследованный Брока, касался человека по имени Тан. Называли его так потому, что он произносил это слово, когда его спрашивали, как его зовут. То же самое он говорил, когда у него спрашивали, когда он родился, где живет или что ему приготовить на ужин. Он вообще ничего не говорил, кроме “Тан”, и при этом прекрасно понимал речь других. Брока пришлось дождаться смерти Тана, чтобы заглянуть в его мозг и узнать, какой участок был травмирован. Современная аппаратура позволяет нейробиологам находить поврежденные участки нервной ткани еще при жизни пациентов, что значительно ускоряет исследование функций, выполняемых соответствующими структурами в здоровом мозге. Еще один проверенный временем метод основан на непосредственной стимуляции различных участков мозга и отслеживании эффектов такой стимуляции. Именно этот метод использовали нейрохирурги из Калифорнии, отметившие, что оперируемые ими пациенты-эпилептики начинают веселиться при стимуляции определенных участков мозга, и обнаружившие часть модуля, отвечающего за чувство юмора.
Функциональная магнитно-резонансная томография помогла выяснить, какие участки мозга задействованы в каких его функциях. Одним из первых непосредственную стимуляцию мозга стал применять в 50-х годах XX века канадский нейрохирург Уайлдер Пенфилд, картировавший обширные участки коры больших полушарий, прикладывая электроды к разным точкам мозга сотен больных эпилепсией. В ходе этих опытов Пенфилд показал, что вся поверхность нашего тела представлена (как будто нарисована) на поверхности мозга: участок, связанный с локтем, располагается рядом с участком, связанным с предплечьем, тот, в свою очередь, располагается рядом с участком, связанным с плечом, и так далее. Но еще больше Пенфилд прославился открытием того, что стимуляция определенных участков височных долей может вызывать в сознании нечто похожее на яркие воспоминания из детства или обрывки давно забытых мелодий. “Реки” мозга Нервные клетки разных типов выделяют разные нейромедиаторы. Информация распространяется в мозге по проводящим путям — цепочкам нейронов, выделяющими вещества и с их помощью возбуждающими или подавляющими активность друг друга. Любой из нейромедиаторов довольно широко распространен в мозге, но работает лишь в определенных его участках и может оказывать разное действие в зависимости от того, где он выделяется. Нейромедиаторы бывают возбуждающими (способствуют возбуждению нейронов, на которые они действуют) и тормозными (подавляют активность нейронов). Науке известны сотни нейромедиаторов, но самые важные из них следующие. Серотонин — нейромедиатор, действие которого усиливает препарат “Прозак”. Серотонин иногда называют “веществом хорошего настроения”. Он и в самом деле оказывает существенное влияние на настроение: повышенная концентрация серотонина (или чувствительность к нему) сопряжена с оптимизмом и спокойствием. Кроме того, серотонин влияет на сон, чувствительность к боли, аппетит и давление крови. Ацетилхолин управляет активностью в участках мозга, связанных с концентрацией внимания, обучением и памятью. У людей, страдающих болезнью Альцгеймера, его уровень в коре больших полушарий обычно понижен. Серотониновые проводящие пути Норадреналин — преимущественно возбуждающий нейромедиатор, способствующий повышению уровня физической и умственной активности и оказывающий бодрящее действие. Основной центр выработки норадреналина находится в голубом пятне — одном из нескольких участков мозга, претендующих на то, чтобы в просторечии именоваться “центром удовольствия”. Глутамат — основной возбуждающий нейромедиатор головного мозга, обеспечивающий формирование связей между нейронами, работа которых лежит в основе обучения и долговременной памяти. Энкефалины и эндорфины — эндогенные опиоиды, которые, подобно наркотикам, облегчают восприятие боли, снижают стресс и способствуют возникновению ощущения легкости и безмятежности. Кроме того, они подавляют некоторые физиологические процессы, такие как дыхание, и могут вызывать физиологическую зависимость. Окситоцин помогает “размывать” границы “я”, создавая ощущение единства с другими и тем самым формируя теплые и доверительные отношения между людьми, особенно между влюбленными и между матерью и младенцем. Он в огромных количествах выделяется у женщин при родах и у людей обоих полов во время оргазма. Дофаминовые связи Дофамин помогает нам находить возможность получить вознаграждение и посылает нас в погоню за ним. По ходу дела он вызывает у нас желание, предвкушение и возбуждение. Дофаминовые проводящие пути проходят, извиваясь, по всему головному мозгу, в разных местах выполняя разные функции. В глубине ствола мозга, в структуре, называемой черной субстанцией, располагаются производящие дофамин нейроны, стимулирующие и поддерживающие нашу активность, физическую и умственную. Когда эти клетки дегенерируют, как при болезни Паркинсона, человек теряет способность уверенно шагать вперед — как в прямом, так и в переносном смысле. Другой комплекс дофаминовых путей называют “системой вознаграждения” нашего мозга. Они ведут от вентральной области покрышки к миндалине, прилежащему ядру, септуму и префронтальной коре (все эти структуры вместе называют медиальным пучком переднего мозга). Стимуляция прилежащего ядра дофамином запускает приготовление нашего тела к тому, чтобы схватить желанный объект или пуститься за ним в погоню, в то время как миндалина определяет ценность этого объекта и способствует возникновению осознанного ощущения возбуждения, а префронтальная кора и септум концентрируют наше внимание на намеченной цели. Все вместе эти реакции создают у нас приподнятое настроение. Однако они не рождают чувство длительного удовлетворения, и если дофаминовая система работает без посредничества других нейромедиаторов, вслед за выбросом дофамина обычно возникает потребность в еще одном таком выбросе, а вслед за ним — в еще одном. Этот механизм лежит в основе психологического привыкания. Дофамин также задействован в формировании ощущения осмысленности, “логичности” окружающего нас мира. Поэтому нарушения дофаминовых путей могут приводить к ощущению бессмысленности, абсурдности бытия или, напротив, удивительного единства мира и его глубокого смысла. Хотя такие состояния и представляют собой отклонения от нормы, у нас нет оснований полагать, что связанные с ними представления о мире сколько-нибудь менее реалистичны, чем те, которые сопряжены с нормальной работой дофаминовой системы. Последние соответствуют установленному эволюцией оптимальному уровню — “приподнятому” достаточно для того, чтобы мы не переставали стремиться к необходимому, например заботясь о пропитании или реализуя возможность оставить потомство, но не слишком “приподнятому”, чтобы мы не начали считать своих врагов частью любящего вселенского разума. Однако это отнюдь не означает, что эволюционно оптимальные для нас представления лучше всего соответствуют действительности. Большинство пациентов говорило, что эти воспоминания были похожи на сон, но при этом совершенно отчетливы. “Мне казалось... что я стою в дверях своей школы”, — рассказывал молодой человек (21 год). “Я слышал, как мать говорит по телефону и приглашает мою тетю навестить нас вечером, — рассказывал другой. — У нас в гостях были мои племянник и племянница... Они собирались домой, надевали пальто и шапки... это было в столовой... моя мать говорила с ними. Она торопилась — очень спешила”30. В то время наблюдения Пенфилда были истолкованы в пользу того предположения, что воспоминания хранятся в мозге в виде отдельных связок (энграмм) и их можно в любой момент вызвать. С тех пор выяснилось, что все не так просто. Долговременная память распределена по всему мозгу и закодирована в тех же участках, где исходно возникали соответствующие ощущения. Например, детские воспоминания о том, как в один солнечный день мы ели мороженое за городом, где пели птицы, хранятся в нескольких сенсорных областях: вкус мороженого — во “вкусовых” областях мозга, ощущение кожей солнечного тепла — в соматосенсорной коре, звуки птичьего пения — в слуховой коре, вид деревьев — в зрительной коре, и так далее. Если исходно мы ощущали все это вместе, то, вызывая в сознании одну из многих составляющих воспоминания, мы, как правило, можем вызвать и остальные, воссоздавая “полное” воспоминание из набора таких составляющих. Пенфилд, по-видимому, стимулировал только один сенсорный аспект памяти, а наблюдал ответ многих. В свою очередь, область, которую стимулировали у смеявшейся пациентки, как выяснилось, представляет собой лишь один из узлов гораздо более обширного модуля, укорененного в самых простых отделах мозга. Эти маленькие участки, отвечающие, казалось бы, за строго определенные функции, оказываются лишь верхушками глубоко сидящих нейронных конгломератов — вершинами айсберга психики. Возможно также, что участки, мозга, активирующиеся при выполнении мысленного задания, не сами ответственны за его решение, а просто передают стимулы к действительно связанным с данной задачей участкам. Подобную возможность иллюстрирует анекдот об ученом, который утверждал, что лягушки “слышат ногами”. Когда от него потребовали доказательств, он продемонстрировал лягушку, которую приучил прыгать по команде. Показав, как она прыгает, он отрезал ей ноги, после чего вновь стал произносить команду. Лягушка не двинулась с места. “Вот видите! — заключил ученый. — Она меня больше не слышит!” Еще одна проблема состоит в том, что часть наблюдаемой активности мозга может быть просто отражением интерференции систем, случайными выбросами. Один исследователь обнаружил это, проводя эксперименты с использованием ФМРТ для изучения нейронной активности, задействованной в социальных взаимодействиях. В одном из таких экспериментов исследователь поместил в сканер не живого человека, а пассивный “объект тестирования” — мертвую рыбу. Эта рыба — большая красивая семга — была куплена в местном магазине бесспорно мертвой и никак не реагировала (что неудивительно) на демонстрацию ей “серии фотографий, изображающих людей в различных ситуациях”. Однако при изучении томограмм выяснилось, что участок, соответствующий крошечному мозгу рыбы, при этом как будто возбуждался, и это якобы свидетельствовало о том, что рыба все-таки задумывалась над предъявленными ей фотографиями. Исследователи, занимающиеся визуализацией мозга, прилагают массу усилий, чтобы избегать подобных ловушек, но иногда им это не удается. Есть мнение, что в этой науке пока очень много от золотой лихорадки: исследователи слишком часто стремятся “застолбить” новые выводы и слишком редко пытаются воспроизводить чужие результаты. И все же почва под ногами ученых постепенно твердеет. Разработка стандартных протоколов сканирования, резко сокращающих возможность получения ложных результатов, и общая методология постановки экспериментов, — все это находится под строгим контролем. “Новые френологи” убеждены, что их открытия, в отличие от открытий Франца Галля, выдержат проверку временем.
Перейти к странице:
Подписывайся на Telegram канал. Будь вкурсе последних новинок!