Поиск
×
Поиск по сайту
Часть 1 из 5 В начало
Для доступа к библиотеке пройдите авторизацию
Предисловие Я не писал предисловия к первому изданию «Краткой истории времени». Это сделал Карл Саган. Вместо этого я добавил короткий раздел под названием «Благодарности», где мне посоветовали выразить всем признательность. Правда, некоторые из благотворительных фондов, оказавших мне поддержку, были не очень рады тому, что я их упомянул, – заявок у них стало намного больше. Я думаю, что никто – ни издательство, ни мой агент, ни даже я сам – не ожидал, что книга будет пользоваться таким успехом. Она продержалась в списке бестселлеров лондонской газеты Sunday Times целых 237 недель – это больше, чем любая другая книга (естественно, не считая Библии и произведений Шекспира). Она была переведена примерно на сорок языков и разошлась огромным тиражом – на каждые 750 жителей Земли, мужчин, женщин и детей, приходится примерно один экземпляр. Как заметил Натан Майрволд из фирмы Microsoft (это мой бывший аспирант), я продал больше книг по физике, чем Мадонна – книг о сексе. Успех «Краткой истории времени» означает, что людей весьма интересуют фундаментальные вопросы – о том, откуда мы взялись, и почему Вселенная такова, какой мы ее знаем. Я воспользовался представившейся мне возможностью дополнить книгу более новыми наблюдательными данными и теоретическими результатами, которые были получены уже после выхода первого издания (1 апреля 1988 года, в День дурака). Я добавил новую главу о кротовых норах и путешествиях во времени. Похоже, общая теория относительности Эйнштейна допускает возможность создания и поддержания кротовых нор – небольших туннелей, связывающих разные области пространства-времени. В этом случае мы могли бы использовать их для быстрого перемещения по Галактике или для путешествий назад во времени. Разумеется, мы пока не встречали ни одного пришельца из будущего (или, может быть, все же встречали?), но я попробую предположить, каким может быть объяснение тому. Я также расскажу о достигнутом за последнее время прогрессе в поиске «дуальностей», или соответствий между на первый взгляд различными физическими теориями. Эти соответствия являются серьезным свидетельством в пользу существования единой физической теории. Но они также говорят о том, что эту теорию, возможно, нельзя сформулировать непротиворечивым, фундаментальным образом. Вместо этого в разных ситуациях приходится довольствоваться различными «отражениями» основополагающей теории. Точно так же мы не можем отобразить всю земную поверхность в подробностях на одной карте и вынуждены использовать разные карты для разных областей. Такая теория стала бы революцией в наших представлениях о возможности объединения законов природы. Однако она никоим образом не затронула бы самого главного: Вселенная подчиняется набору рациональных законов, которые мы в состоянии открыть и постичь. Что касается наблюдательного аспекта, то здесь, безусловно, важнейшим достижением стало измерение флуктуаций реликтового излучения в рамках проекта COBE (англ. Cosmic Background Explorer – «Исследователь космического фонового излучения»)[1] и других. Эти флуктуации, по сути, являются «печатью» творения. Речь об очень малых неоднородностях в ранней Вселенной, в остальном вполне гомогенной. Впоследствии они превратились в галактики, звезды и прочие структуры, которые мы наблюдаем через телескоп. Формы флуктуаций согласуются с предсказаниями модели Вселенной, не имеющей границ в воображаемом временно?м направлении. Но чтобы предпочесть предлагаемую модель другим возможным объяснениям флуктуаций реликтового излучения, потребуются новые наблюдения. Через несколько лет станет ясно, можно ли считать нашу Вселенную полностью замкнутой, без начала и конца. Стивен Хокинг Глава первая. Наша картина Вселенной Однажды известный ученый (говорят, это был Бертран Рассел) читал публичную лекцию по астрономии. Он рассказывал, как Земля движется по орбите вокруг Солнца и как Солнце, в свою очередь, движется по орбите вокруг центра огромного скопления звезд, называемого нашей Галактикой. Когда лекция закончилась, маленькая пожилая женщина в дальнем ряду аудитории встала и произнесла: «Всё, что тут говорили, – полная ерунда. Мир – плоская тарелка на спине гигантской черепахи». Ученый снисходительно улыбнулся и спросил: «На чем же стоит та черепаха?» «Вы ведь очень умный молодой человек, очень умный, – ответила дама. – Черепаха стоит на другой черепахе, та – на следующей, и так до бесконечности!» Большинство сочтет нелепой попытку выдать нашу Вселенную за бесконечно высокую башню из черепах. Но отчего мы так уверены, что наше представление о мире лучше? Что же нам в самом деле известно о Вселенной и откуда мы всё это знаем? Как возникла Вселенная? Что ждет ее в будущем? Было ли у Вселенной начало, а если было, то что было до него? Какова природа времени? Закончится ли оно когда-нибудь? Можно ли двигаться во времени вспять? Ответы на некоторые из этих давних вопросов дают недавние прорывы в физике, которым мы, в частности, обязаны появлению фантастических новых технологий. Когда-нибудь мы сочтем новые знания такими же очевидными, как то, что Земля обращается вокруг Солнца. А может быть, такими же абсурдными, как представление о башне из черепах. Только время (чем бы оно ни было) покажет. Давным-давно, за 340 лет до нашей эры, греческий философ Аристотель написал трактат «О небе». В нем он выдвинул два убедительных доказательства того, что Земля имеет форму шара и совсем не является плоской, как тарелка. Во-первых, он понял, что причина лунных затмений – прохождение Земли между Солнцем и Луной. Отбрасываемая Землей на Луну тень всегда имеет округлую форму, и это возможно, только если Земля также округлая. Если бы Земля имела форму плоского диска, то тень, как правило, имела бы форму эллипса; круглой она была бы только тогда, когда Солнце во время затмения располагалось бы точно под центром диска. Во-вторых, древние греки знали из опыта своих путешествий, что на юге Полярная звезда расположена ближе к горизонту, чем при наблюдении в местностях, расположенных севернее. (Поскольку Полярная звезда расположена над Северным полюсом, то наблюдатель на Северном полюсе видит ее прямо над головой, а наблюдатель в районе экватора – над самым горизонтом.) Более того, Аристотель, исходя из разности видимого положения Полярной звезды при наблюдениях в Египте и Греции, смог оценить длину окружности Земли в 400 000 стадиев. Мы не знаем, чему в точности был равен один стадий, но если предположить, что он составлял около 180 метров, то оценка Аристотеля примерно в два раза больше принятого в настоящее время значения. У греков был еще и третий аргумент в пользу круглой формы Земли: как иначе объяснить, почему при приближении корабля к берегу сначала показываются лишь его паруса, а только потом корпус? Аристотель считал Землю неподвижной, а также полагал, что Солнце, Луна, планеты и звезды обращаются по круговым орбитам вокруг Земли. Он руководствовался мистическими соображениями: Земля, по Аристотелю, является центром Вселенной, а движение по кругу наиболее совершенно. Во II веке нашей эры Птолемей построил на основе этой идеи всеобъемлющую космологическую модель. В центре Вселенной находилась Земля, окруженная восемью вложенными друг в друга вращающимися сферами, и на этих сферах располагались Луна, Солнце, звезды и известные в то время пять планет – Меркурий, Венера, Марс, Юпитер и Сатурн (рис. 1.1). Каждая планета двигалась относительно своей сферы по малому кругу – для того, чтобы описать весьма сложные траектории этих светил на небе. На внешней сфере были закреплены звезды, и поэтому их взаимные положения оставались неизменными, конфигурация вращалась на небе как единое целое. Представления о том, что расположено за пределами внешней сферы, оставались весьма расплывчатыми, но это заведомо находилось за пределами части Вселенной, доступной человечеству для наблюдения. Модель Птолемея позволяла довольно точно предсказывать положение светил на небе. Но чтобы добиться согласия предсказаний с наблюдениями, Птолемею пришлось предположить, что расстояние от Луны до Земли в разное время могло отличаться в два раза. А это означало, что видимый размер Луны иногда должен был быть в два раза больше привычного! Птолемей сознавал этот недостаток своей системы, что тем не менее не помешало почти единогласному признанию его картины мира. Христианская церковь приняла Птолемееву систему, поскольку сочла ее не противоречащей Священному Писанию: за пределами сферы неподвижных звезд оставалось достаточно места для рая и ада. Рис. 1.1 Но в 1514 году польский священник Николай Коперник предложил более простую модель. (Правда, вначале, опасаясь быть обвиненным церковью в ереси, Коперник распространял свои космологические идеи анонимно.) Коперник предположил, что Солнце неподвижно и расположено в центре, а Земля и планеты движутся вокруг него по круговым орбитам. Понадобилось почти столетие, чтобы эту идею восприняли всерьез. Одними из первых в пользу теории Коперника стали публично высказываться двое ученых-астрономов – немец Иоганн Кеплер и итальянец Галилео Галилей, несмотря на то, что предсказываемые этой теорией траектории небесных тел не совпадали в точности с наблюдаемыми. Окончательный удар по системе мира Аристотеля и Птолемея нанесли события 1609 года – тогда Галилей начал наблюдать ночное небо через только что изобретенный телескоп[2]. Взглянув на планету Юпитер, Галилей обнаружил несколько обращающихся вокруг него небольших спутников. Отсюда следовало, что не все небесные тела обращаются вокруг Земли, как считали Аристотель с Птолемеем. (Можно было, конечно, продолжать считать Землю неподвижной и расположенной в центре Вселенной, полагая, что спутники Юпитера движутся вокруг Земли по исключительно запутанным траекториям так, что это похоже на их обращение вокруг Юпитера. Но все же теория Коперника была намного проще.) Примерно в то же время Кеплер уточнил теорию Коперника, предположив, что планеты движутся не по круговым орбитам, а по эллиптическим (то есть вытянутым), благодаря чему удалось добиться согласия предсказаний теории с наблюдениями. Правда, Кеплер рассматривал эллипсы лишь как математический трюк, и притом весьма одиозный, потому что эллипсы – менее совершенные фигуры, чем окружности. Кеплер обнаружил, почти случайно, что эллиптические орбиты хорошо описывают наблюдения, но при этом никак не мог согласовать предположение об эллиптических орбитах со своей идеей о магнитных силах как причине движения планет вокруг Солнца. Причину движения планет вокруг Солнца значительно позже, в 1687 году, раскрыл сэр Исаак Ньютон в трактате «Математические начала натуральной философии» – пожалуй, важнейшей из когда-либо опубликованных работ по физике. В этом труде Ньютон не только выдвинул теорию, описывающую движение тел в пространстве и во времени, но и разработал сложный математический аппарат, необходимый для описания этого движения. Кроме того, Ньютон сформулировал закон всемирного тяготения, согласно которому всякое тело во Вселенной притягивается к любому другому телу с силой, которая тем больше, чем больше массы тел и чем меньше расстояние между взаимодействующими телами. Это та самая сила, которая заставляет предметы падать на землю. (История о том, что на мысль о законе всемирного тяготения Ньютона навело упавшее на его голову яблоко, скорее всего, просто выдумка. Ньютон говорил лишь, что эта идея пришла к нему, когда он находился «в созерцательном настроении» и был «под впечатлением от падения яблока».) Ньютон показал, что согласно сформулированному им закону под действием тяготения Луна должна двигаться по эллиптической орбите вокруг Земли, а Земля и планеты – по эллиптическим орбитам вокруг Солнца. Модель Коперника исключала необходимость в Птолемеевых сферах, а с ними – и в предположении о наличии у Вселенной некоей естественной внешней границы. Поскольку у «неподвижных» звезд не обнаруживалось никакого движения, кроме общего суточного движения небосвода, вызванного вращением Земли вокруг своей оси, то было естественно предположить, что это такие же тела, как наше Солнце, только расположенные гораздо дальше. Ньютон понял, что согласно его теории тяготения звезды должны притягивать друг друга и поэтому, по-видимому, не могут оставаться неподвижными. Почему же они не сблизились и не скопились в одном месте? В своем письме другому выдающемуся мыслителю своего времени, Ричарду Бентли, написанном в 1691 году, Ньютон утверждал, что они будут сближаться и скапливаться только в том случае, если число звезд, сосредоточенных в ограниченной области пространства, конечно. А если число звезд бесконечно и распределены они более или менее равномерно в бесконечном пространстве, то этого не произойдет из-за отсутствия какой бы то ни было явной центральной точки, в которую могли бы «провалиться» звезды. Это одна из тех ловушек, которые встречаются при рассуждениях о бесконечности. В бесконечной Вселенной любая ее точка может рассматриваться как ее центр, потому что по каждую сторону от нее находится бесконечное число звезд. Правильный подход (к которому пришли гораздо позже) – решение задачи в конечном случае, когда звезды падают друг на друга, и исследование того, как результат меняется при добавлении в конфигурацию звезд, расположенных за пределами рассматриваемой области и распределенных более или менее равномерно. Согласно закону Ньютона в среднем дополнительные звезды в совокупности не должны оказывать никакого влияния на первоначальные звезды, и поэтому эти звезды исходной конфигурации должны все так же быстро падать одна на другую. Так что сколько звезд ни добавляй, они все равно будут падать одна на другую. Теперь мы знаем, что невозможно получить бесконечную стационарную модель Вселенной, в которой сила гравитации имеет исключительно «притягивающий» характер. Об интеллектуальной атмосфере до начала XX века многое говорит тот факт, что никому тогда не пришел в голову сценарий, согласно которому Вселенная может сжиматься или расширяться. Общепринятой была концепция Вселенной, либо существовавшей всегда в неизменном виде, либо сотворенной в некоторый момент в прошлом – в том виде, в каком мы ее наблюдаем сейчас. Это могло, в частности, быть следствием того, что люди склонны верить в вечные истины. Стоит вспомнить хотя бы, что величайшее утешение дает мысль о том, что, хотя мы все стареем и умираем, Вселенная вечна и неизменна. Даже ученые, понимавшие, что согласно ньютоновской теории тяготения Вселенная не может быть статичной, не осмеливались предположить, что она может расширяться. Вместо этого они пытались скорректировать теорию так, чтобы гравитационная сила на очень больших расстояниях становилась отталкивающей. Такое предположение не меняло существенно предсказанные движения планет, но позволяло бесконечно большому числу звезд оставаться в состоянии равновесия: силы притяжения со стороны близких звезд уравновешивались силами отталкивания более далеких звезд. Сейчас же считается, что такое равновесное состояние должно быть неустойчивым: стоит звездам в какой-либо области чуть больше приблизиться друг к другу, как их взаимное притяжение усилится и превзойдет силы отталкивания, в результате чего звезды продолжат падать друг на друга. С другой стороны, стоит звездам оказаться лишь слегка дальше друг от друга, как силы отталкивания возьмут верх над силами притяжения и звезды разлетятся. Другое возражение против концепции бесконечной статичной Вселенной обычно связывают с именем немецкого философа Генриха Ольберса, который опубликовал свои рассуждения по этому поводу в 1823 году. В действительности на эту проблему обращали внимание многие современники Ньютона, и статья Ольберса была отнюдь не первой, где приводились веские доводы против такой концепции. Однако она была первой, получившей широкое признание. Дело в том, что в бесконечной статичной Вселенной почти любой луч зрения должен упираться в поверхность какой-нибудь звезды, и поэтому все небо должно светиться так же ярко, как Солнце, причем даже ночью. Контраргумент Ольберса состоял в том, что свет далеких звезд должен ослабляться из-за поглощения веществом, находящимся между нами и этими звездами. Но тогда это вещество разогрелось бы и светилось так же ярко, как и сами звезды. Избежать вывода о том, что яркость всего неба сравнима с яркостью Солнца, можно, только предположив, что звезды не светились вечно, а «зажглись» некоторое определенное время назад. В этом случае поглощающее вещество не успело бы нагреться или свет далеких звезд не успел бы достичь нас. Таким образом, мы приходим к вопросу о причине, по которой зажглись звезды. Конечно, люди обсуждали происхождение Вселенной задолго до этого. Во многих ранних космологических представлениях, а также в иудейской, христианской и мусульманской картинах мира Вселенная возникла в определенное и не очень далекое время в прошлом. Одним из аргументов в пользу такого начала было ощущение необходимости некоей первопричины, которая бы объясняла существование Вселенной. (В пределах самой Вселенной любое происходящее в ней событие объясняется как следствие другого, более раннего события; существование же самой Вселенной можно таким образом объяснить, только предположив, что у нее было некое начало.) Другой аргумент был высказан Аврелием Августином, или Блаженным Августином, в труде «О граде Божьем». Он отметил, что цивилизация развивается и что мы помним, кто совершил то или иное деяние или изобрел тот или иной механизм. Следовательно, человек, а возможно, и Вселенная не могли существовать очень долгое время. Блаженный Августин считал, в соответствии с Книгой Бытия, что Вселенная была сотворена примерно за 5000 лет до Рождества Христова. (Интересно, что это близко к эпохе окончания последнего Ледникового периода, – около 10 000 лет до нашей эры, – которую археологи считают началом возникновения цивилизации.) Аристотелю, а также большинству древнегреческих философов, наоборот, не нравилась идея о сотворении мира, потому что она исходила из божественного вмешательства. Они считали, что человеческий род и мир существовали всегда и будут существовать вечно. Мыслители древности осмыслили и вышеупомянутый довод о прогрессе цивилизации и парировали: они заявили, что человеческий род периодически возвращался к стадии начала цивилизации под действием потопов и других стихийных бедствий. Вопросы о том, было ли у Вселенной начало во времени и ограничена ли она в пространстве, также поднимал философ Иммануил Кант в своем монументальном (правда, весьма сложном для понимания) труде «Критика чистого разума», опубликованном в 1781 году. Кант называл эти вопросы антиномиями (то есть противоречиями) чистого разума, потому что чувствовал, что есть одинаково убедительные доводы в пользу как тезиса – то есть того, что у Вселенной было начало, – так и антитезиса – то есть того, что Вселенная существовала всегда. В доказательство тезиса Кант приводит такие рассуждения: если бы у Вселенной не было начала, то любому событию должно было предшествовать бесконечное время, что, по мнению философа, абсурдно. В пользу антитезиса выдвигалось то соображение, что если бы у Вселенной было начало, то до него должно было пройти бесконечное время и непонятно, почему же Вселенная возникла в какой бы то ни было конкретный момент времени. В сущности, кантовские обоснования тезиса и антитезиса почти что идентичны. В обоих случаях в основе рассуждений лежит неявное предположение философа о том, что время бесконечно продолжается в прошлое независимо от того, существовала ли Вселенная всегда. Как мы увидим, понятие времени не имеет смысла до рождения Вселенной. Первым это отметил Блаженный Августин. Его спросили: «Что делал Бог до того, как создал мир?», и Августин не стал утверждать, что Бог готовил ад для тех, кто задает такие вопросы. Вместо этого он постулировал, что время – это свойство сотворенного Богом мира и что до начала Вселенной времени не существовало. Когда большинство людей считали Вселенную в целом статичной и неизменной, вопрос о наличии у нее начала относился скорее к сфере метафизики или теологии. Наблюдаемую картину мира можно было с одинаковым успехом объяснить как в рамках теории о том, что Вселенная существовала всегда, так и на основе предположения, что она была приведена в движение в какое-то конкретное время, но таким образом, что сохраняется видимость, будто она существует вечно. Но в 1929 году Эдвин Хаббл сделал фундаментальное открытие: он обратил внимание на то, что далекие галактики, где бы они ни находились на небе, всегда удаляются от нас с большими скоростями, [пропорциональными расстоянию до них][3]. Другими словами, Вселенная расширяется. Это значит, что в прошлом объекты во Вселенной были ближе друг к другу, чем сейчас. И похоже, что в некий момент времени – где-то 10–20 миллиардов лет назад – все, что есть во Вселенной, было сконцентрировано в одном месте, и следовательно, плотность Вселенной была бесконечной. Это открытие вывело вопрос о начале Вселенной в сферу науки.
Из хаббловских наблюдений следовало, что в некий момент времени в прошлом – так называемый момент Большого взрыва – Вселенная была бесконечно малой и бесконечно плотной. В таких условиях перестают действовать все научные законы и, следовательно, становится невозможно предсказывать какие-либо будущие события. Никакие происшествия, имевшие место до этого момента, не могли бы повлиять на то, что творится в настоящее время. Существованием таких событий можно пренебречь, потому что они не могут иметь никаких наблюдаемых последствий. Можно сказать, что время началось в момент Большого взрыва, поскольку предшествовавшие моменты времени в принципе нельзя помыслить и зафиксировать. Такое начало времени существенно отличается от того, что рассматривалось раньше. В неменяющейся Вселенной начало во времени – это нечто, спровоцированное неким существом, находящимся вне Вселенной. То есть не было никакой физической необходимости в ее зарождении. Можно представить, что Бог сотворил Вселенную практически в любой момент в прошлом. С другой стороны, если Вселенная расширяется, то для ее начала вполне могут существовать физические основания. Можно продолжать считать, что Бог сотворил Вселенную в момент Большого взрыва или позднее – чтобы это выглядело так, будто произошел Большой взрыв, – но предполагать, что Вселенная была создана до Большого взрыва, бессмысленно. Расширяющаяся Вселенная не исключает присутствия творца, но накладывает определенные ограничения на то, когда он мог сделать свое дело. Прежде чем говорить о природе Вселенной и обсуждать, было ли у нее начало и есть ли у нее конец, следует четко представлять себе, что такое научные теории. Я буду придерживаться упрощенного представления о том, что теория есть просто модель Вселенной или какой-либо ее части и набор правил, связывающих параметры этой модели с нашими наблюдениями. Она существует только в нашем сознании и никак не присутствует в реальности (что бы это ни значило). Теория считается хорошей, если она удовлетворяет двум требованиям. Во-первых, она должна правильно описывать большой класс наблюдений на основе модели с небольшим числом произвольных элементов. Во-вторых, она должна позволять с достаточной определенностью предсказывать результаты будущих наблюдений. Например, Аристотель верил в теорию Эмпедокла, согласно которой всё в мире состоит из четырех стихий: земли, воздуха, огня и воды. Это была довольно простая теория, но она не позволяла делать какие-либо точные предсказания. С другой стороны, теория тяготения Ньютона основана на еще более простой модели, в которой тела притягиваются друг другу с силой, пропорциональной величине, называемой массой, и обратно пропорциональной квадрату расстояния между телами. И при этом теория Ньютона позволяет с очень высокой точностью предсказывать движение Солнца, Луны и планет. Любая физическая теория по природе своей – временная в том смысле, что это всего лишь гипотеза, которую невозможно доказать. Сколько бы экспериментов ни подтверждали эту теорию, никогда нельзя быть уверенным, что следующий результат не будет ей противоречить. С другой стороны, для опровержения теории достаточно единственного наблюдения, результаты которого противоречат ее предсказаниям. Как отметил философ науки Карл Поппер, хорошая теория – та, что позволяет делать множество предсказаний, которые в принципе могут быть опровергнуты или, как это называет Поппер, фальсифицированы наблюдением. С каждым новым экспериментом, результаты которого согласуются с предсказаниями теории, степень нашего доверия к ней повышается, а сама теория укрепляется. Однако первое же противоречащее теории наблюдение является основанием отвергнуть или существенно изменить ее. Во всяком случае, так должно быть в идеале, хотя, конечно, всегда можно поставить под сомнение квалификацию наблюдателя или экспериментатора. На практике новая теория часто представляет собой расширение предыдущей. Например, очень точные наблюдения планеты Меркурий выявили небольшие расхождения между наблюдаемым движением и предсказаниями ньютоновской теории тяготения. Движение планеты, рассчитанное согласно эйнштейновской общей теории относительности, слегка отличалось от того, что предсказывала ньютоновская теория. Согласие предсказанного теорией Эйнштейна движения Меркурия с наблюдениями и отсутствие такого согласия с ньютоновской теорией стали двумя ключевыми подтверждениями новой концепции. Тем не менее мы до сих пор пользуемся ньютоновской теорией для большинства практических задач, потому что в ситуациях, с которыми нам обычно приходится сталкиваться, ее предсказания отличаются от предсказаний общей теории относительности очень незначительно. (К тому же ньютоновская теория куда проще теории Эйнштейна!) Конечная цель науки состоит в создании единой теории для описания всей Вселенной. Но в реальности подход большинства ученых состоит в разделении проблемы на две части. Во-первых, есть законы, управляющие тем, как Вселенная меняется со временем. (Если мы знаем состояние Вселенной в определенный момент времени, то такие физические законы позволяют нам определить, как она будет выглядеть в любой другой момент.) Второй вопрос – это начальное состояние Вселенной. Некоторые считают, что наука должна заниматься только первой проблемой, а вопрос о начальном состоянии скорее относится к компетенции метафизики или религии. Они считают, что Бог, будучи всемогущим, мог создать Вселенную любым желаемым образом. Может быть, это и так, но тогда Бог мог также заставить Вселенную развиваться совершенно произвольным образом. Однако похоже, что Богу было угодно, чтобы Вселенная развивалась в соответствии с четко определенными законами. И поэтому представляется вполне разумным предположить, что начальное состояние Вселенной тоже подчинялось строгому набору правил. Создать теорию, описывающую сразу всю Вселенную, оказалось очень трудным делом. Вместо этого ученые разделили проблему на множество частей и построили множество частных теорий. Каждая из них описывает и предсказывает ограниченный класс наблюдений, пренебрегая влиянием других факторов или представляя их в виде простых наборов чисел. Вполне возможно, что этот подход в корне неверен. Если во Вселенной все фундаментальным образом взаимозависимо, то получить полное решение, исследуя проблему фрагментарно в отрыве от целого, было бы невозможно. Тем не менее до сих пор именно этот подход обеспечивал прогресс науки. Классическим примером так же может служить теория тяготения Ньютона, согласно которой сила взаимного притяжения тел зависит только от присущей каждому из них числовой характеристики – его массы – и совершенно не зависит от того, из чего состоят эти тела. Таким образом, орбиты Солнца и планет можно рассчитывать, не вдаваясь в подробности об их составе и внутреннем строении[4]. Сейчас для описания Вселенной используют две основные частные теории – общую теорию относительности и квантовую механику. Это два великих интеллектуальных достижения первой половины XX века. Общая теория относительности описывает силу тяготения и крупномасштабную структуру Вселенной, то есть ее строение на масштабах от нескольких километров до миллиона миллионов миллионов миллионов (единица с двадцатью четырьмя нулями) километров – размера наблюдаемой Вселенной. Квантовая механика же, напротив, имеет дело с явлениями на чрезвычайно малых масштабах, такими как миллионная часть миллионной доли сантиметра. Как известно, эти две теории – к величайшему сожалению – несовместимы друг с другом, и поэтому по крайней мере одна из них не может быть правильной. Одним из главных направлений исследований в физике сегодня и главной темой этой книги является разработка новой теории, которая бы объединила в себе оба частных случая, – квантовой теории гравитации. Такой теории пока еще нет, и, быть может, мы еще далеки от ее создания, но нам уже известны многие из свойств, которыми она должна обладать. И, как будет видно в последующих главах, нам уже известно довольно много ее неизбежных предсказаний. Так что, если исходить из того, что Вселенная устроена не произвольным образом, а подчиняется определенным законам, необходимо в конце концов объединить частные теории в одну всеобъемлющую, которая сможет описать все во Вселенной. Но поиск такой полной единой теории связан с фундаментальным парадоксом. Описанное выше представление о научных теориях предполагает, что мы являемся разумными существами, которые вольны наблюдать Вселенную так, как им заблагорассудится, и делать логические выводы из увиденного. В таком случае у нас есть основания полагать, что рано или поздно мы сможем осознать законы, которым подчиняется наша Вселенная. Но если бы полная объединенная теория действительно существовала, она, очевидно, также определяла бы и наши действия. И тогда она определяла бы исход нашего поиска! Так почему же из нее должно следовать, что мы на основании полученных данных придем к правильным выводам? Может ли это означать, что мы с равной степенью вероятности придем к ошибочным выводам? Или вовсе не сможем ничего заключить? Единственный способ решить эту дилемму я вижу в дарвиновском принципе естественного отбора. Идея заключается в том, что особи в любой популяции самовоспроизводящихся организмов будут неизбежно различаться по генетическому материалу и опыту. А это значит, что некоторые особи будут чаще, чем другие, делать правильные выводы об окружающем их мире и действовать соответствующим образом. С высокой степенью вероятности именно они будут выживать и воспроизводиться, поэтому их манера поведения и образ мыслей станут преобладающими. Конечно, в прошлом интеллект и научные достижения не раз становились главным фактором выживания. Не совсем ясно, так ли это до сих пор, ведь наши недавние открытия вполне способны стереть нас с лица Земли. Но даже если этого не произойдет, единая теория может и не добавить нам шансов в борьбе за выживание. Однако если Вселенная эволюционирует согласно неким законам, то стоит ожидать, что полученные нами в ходе естественного отбора умственные способности поспособствуют поискам всеобъемлющей единой теории и не выведут нас на ложный путь. Поскольку уже имеющихся частных теорий достаточно для точных предсказаний во всех ситуациях, кроме самых экстремальных, поиск всеобщей теории Вселенной трудно оправдать чисто практическими соображениями. (Заметим однако, что аналогичные доводы можно было привести в отношении и теории относительности, и квантовой механики, а ведь благодаря этим теориям мы овладели ядерной энергией и совершили революцию в микроэлектронике.) Так что от построения полной единой теории особого проку для нашего выживания как вида может и не быть, да и на нашем образе жизни это может никак не сказаться. Но ведь уже на заре цивилизации люди не желали довольствоваться картиной мира, в котором события и явления не связаны между собой и необъяснимы. Они стремились к пониманию лежащего в основе мироздания порядка. И сегодня нам хочется понять, почему мы здесь и откуда мы родом. Исконное стремление человечества к знаниям – достаточное основание для продолжения поисков, и наша цель – полное описание Вселенной, в которой мы живем, не больше и не меньше. Глава вторая. Пространство и время Современные представления о движении тел восходят к учениям Галилея и Ньютона. До того люди верили Аристотелю. Он постулировал, что естественное состояние тела – состояние покоя и что тело движется, только если его принуждает к тому сила или импульс. Из этого следовало, что более тяжелое тело должно падать быстрее, чем легкое, поскольку оно испытывает более сильное притяжение, которое влечет его к Земле. Кроме того, в аристотелевской традиции считалось, что все управляющие Вселенной законы можно вывести чисто умозрительным путем, не обращаясь к наблюдениям. Так, в частности, никто до Галилея не счел нужным проверить, действительно ли тела разного веса падают с разной скоростью. Считают, что Галилей доказал ложность системы Аристотеля, бросая разнообразные предметы с падающей Пизанской башни в Италии. В действительности же все было, скорее всего, не так… Но Галилей проделал другой, эквивалентный эксперимент: он пускал шары разного веса по ровной наклонной поверхности. Эта ситуация аналогична той, когда тяжелые тела падают вертикально, но движение по наклонной поверхности проще наблюдать из-за меньших скоростей. Измерения Галилея показали, что скорость любого тела увеличивается с постоянным темпом независимо от веса. Например, если вы отпустите мяч на наклонной плоскости с уклоном в один метр на каждые десять метров, то через одну секунду мяч будет двигаться вниз по склону со скоростью около одного метра в секунду, через две секунды – со скоростью два метра в секунду и т. д., вне зависимости от веса мяча. Конечно, свинцовый груз падает быстрее, чем перо, но лишь потому, что сопротивление воздуха тормозит перо. Если вы сбросите два тела, которые не испытывают большого сопротивления воздуха, например два разных свинцовых груза, то они будут падать с одинаковой скоростью. На Луне, где воздух не мешает предметам перемещаться, астронавт Дэвид Р. Скотт выполнил эксперимент с пером и свинцовым грузом и обнаружил, что они достигли поверхности одновременно. Ньютон использовал измерения Галилея в качестве основы для своих законов движения. В опытах Галилея, когда тело скатывалось вниз по наклонной плоскости, на него всегда воздействовала одна и та же сила (его вес), результатом чего было постоянное ускорение тела. Отсюда следовало, что в реальности воздействие силы на тело всегда приводит к изменению скорости его движения, а не только к его перемещению, как считалось ранее. Это также означало, что всякий раз, когда на тело не воздействует какая-либо сила, оно продолжает двигаться по прямой с постоянной скоростью. Эта идея была впервые ясно сформулирована в 1687 году в «Математических началах» Ньютона. Она стала известна как первый закон Ньютона. То, что происходит с телом, когда на него действует сила, определяется вторым законом Ньютона: тело ускоряется (то есть его скорость изменяется) со скоростью, пропорциональной приложенной силе. (Например, в два раза большая сила приводит к аналогичному росту ускорения.) Ускорение тем меньше, чем больше масса (или количество материи) тела. (Одно и то же усилие, действующее на тело, масса которого в два раза больше, произведет в два раза меньшее ускорение.) Привычный пример – это автомобиль: чем мощнее двигатель, тем больше ускорение, но чем тяжелее автомобиль, тем меньше ускорение при том же двигателе. Ньютон дополнил сформулированные им законы движения открытым им же законом всемирного тяготения, который гласит, что любое тело притягивается к любому другому телу с силой, пропорциональной массе каждого из тел. Таким образом, сила взаимного притяжения двух тел удвоится, если удвоить массу одного из тел (например тела А). Это вполне ожидаемо, потому что тело А можно представить состоящим из двух тел исходной массы. Каждое из этих тел должно притягивать тело B с первоначальной силой, и, таким образом, общая сила притяжения тел А и В будет в два раза больше первоначальной силы. И если масса одного из тел в два, а масса второго тела – в три раза больше соответствующей первоначальной массы, то сила взаимного притяжения окажется в шесть раз больше первоначальной. Теперь понятно, почему все тела падают с одинаковой скоростью: тело, весящее в два раза больше, испытывает в два раза большую силу тяготения. Но его масса в два раза больше, и следовательно, согласно второму закону Ньютона, эти два эффекта полностью компенсируют друг друга, и поэтому ускорение будет одинаковым во всех случаях. Закон тяготения Ньютона также гласит, что чем дальше друг от друга тела, тем меньше сила их взаимного притяжения. Согласно этому закону сила тяготения звезды составляет в точности одну четверть силы тяготения такой же звезды на расстоянии вдвое меньше. Этот закон очень точно предсказывает орбиты Земли, Луны и планет. Если бы сила притяжения звезды уменьшалась с расстоянием медленнее или быстрее, то орбиты планет не были бы эллиптическими. Планеты бы двигались по спирали, приближаясь к Солнцу или удаляясь от него. Существенное отличие идей Аристотеля с одной стороны и Галилея и Ньютона – с другой состоит в том, что Аристотель считал предпочтительным состояние покоя. Именно в нем должно находиться любое тело, не возмущаемое какой-либо силой или импульсом. В частности, Аристотель считал, что Земля находится в состоянии покоя. Но из законов Ньютона следует, что единого стандарта покоя не существует. Можно с одинаковым основанием сказать, что тело А находится в состоянии покоя, а тело В движется с постоянной скоростью относительно тела А, или же что тело В находится в состоянии покоя, а движется тело А. Например, если на время пренебречь вращением Земли и ее движением по орбите вокруг Солнца, то можно считать, что Земля находится в состоянии покоя, а поезд на ее поверхности движется на север со скоростью сто пятьдесят километров в час. Но можно также считать поезд находящимся в состоянии покоя, а Землю движущейся на юг со скоростью сто пятьдесят километров в час. При проведении опытов с движущимися телами в поезде все законы Ньютона тоже выполняются. Если сыграть в настольный теннис в железнодорожном вагоне, то окажется, что мячик ведет себя точно так же, как при игре в пинг-понг на столе, стоящем на земле рядом с путями. Поэтому нельзя с полной уверенностью утверждать, что движется: Земля или поезд. Отсутствие абсолютного стандарта покоя означало, что невозможно определить, случились ли произошедшие в разное время два события в одном и том же месте в пространстве. Например, предположим, что наш шарик для пинг-понга в поезде отскакивает вверх и падает вниз, ударяясь о стол дважды в одном и том же месте с интервалом в одну секунду. Наблюдателю, который находится у железнодорожной колеи, будет казаться, что расстояние между двумя отскоками составляет около 40 метров, потому что именно это расстояние поезд пройдет за означенное время. Следовательно, отсутствие абсолютной системы отсчета означает – вопреки представлениям Аристотеля – невозможность соотнести событие с абсолютным положением в пространстве. Пространственные координаты событий и расстояние между ними будут разными для человека, едущего в поезде, и наблюдателя, стоящего рядом с железнодорожными путями, и при этом нет никаких оснований предпочесть наблюдения одного наблюдениям другого. Ньютона очень беспокоило отсутствие абсолютного положения или, как он формулировал, абсолютного пространства, поскольку это противоречило его идее об абсолютном Боге. Ученый отказывался признавать отсутствие абсолютного пространства, несмотря на то, что оно вытекало из сформулированных им законов. Многие ожесточенно критиковали его за иррациональную веру, и, пожалуй, самым суровым его критиком был епископ Беркли – философ, считавший все материальные объекты, а также пространство и время всего лишь иллюзией. Когда знаменитому доктору Джонсону рассказали о взглядах Беркли, он закричал: «Я отвергаю это!» – и ударил ногой большой камень. Аристотель и Ньютон верили в существование абсолютного времени. То есть они считали, что можно однозначно измерить промежуток времени между двумя событиями. Подразумевалось, что это значение будет безусловным и не будет зависеть от того, кто его измеряет. Конечно, при условии, что наблюдатель использует хорошие часы. В их представлении время было полностью отделено от пространства и независимо от него. Большинство людей считают это само собой разумеющимся, хотя нам пришлось пересмотреть взгляды на пространство и время. Привычные представления о них прекрасно работают, если речь идет о сравнительно медлительных объектах, например яблоках и планетах. В то же время они оказываются совершенно неприменимыми к объектам, которые движутся со скоростью, близкой к скорости света или равной ей. Датский астроном Оле Кристенсен Рёмер в 1676 году впервые установил, что свет распространяется с конечной, хотя и очень большой скоростью. Он обнаружил, что спутники Юпитера исчезают из поля зрения за диском планеты через разные интервалы времени, а не идентичные, как этого следовало ожидать, если бы они двигались равномерно. Расстояние между Юпитером и Землей меняется по мере движения этих планет вокруг Солнца. Рёмер обнаружил, что затмения спутников Юпитером наблюдаются тем позже, чем дальше Юпитер находится от Земли, и сделал вывод, что причина в том, что свету от спутников приходится преодолевать большее расстояние, чтобы достичь нас. Правда, рассчитанные им изменения расстояния от Земли до Юпитера были не очень точными, а потому он оценил скорость света примерно в 220 000 километров в секунду – против современного значения в 300 000 километров в секунду. И тем не менее результат Рёмера, которому удалось не только доказать конечность скорости света, но и измерить ее, был замечательным достижением, особенно учитывая, что оно явилось за 11 лет до выхода в свет «Математических начал» Ньютона. Полноценная теория распространения света была создана только в 1865 году, когда британский физик Джеймс Клерк Максвелл смог объединить частные теории электрических и магнитных сил. Из уравнений Максвелла следовала возможность существования волнообразных возмущений электромагнитного поля, а также то, что эти возмущения должны распространяться с постоянной скоростью подобно волнам на поверхности пруда. Волны с длиной (то есть расстоянием между двумя последовательными гребнями) более одного метра сейчас называют радиоволнами. Сегодня мы знаем, что более короткие волны называют СВЧ-волнами (несколько сантиметров) или инфракрасным излучением (если длина волны составляет более одной десятитысячной сантиметра). Длина волн видимого света составляет от сорока до восьмидесяти миллионных сантиметра. Излучение с еще меньшими длинами волн известно как ультрафиолетовое, рентгеновское и гамма-излучение. Из теории Максвелла следовало, что радиоволны и волны видимого света должны распространяться с определенной фиксированной скоростью. Но теория Ньютона рассталась с представлением об абсолютном покое, и поэтому, если свет распространяется с фиксированной скоростью, надо указать, относительно чего следует измерять эту скорость. Поэтому выдвинули предположение о существовании некоей субстанции, названной эфиром, которая пронизывает все вокруг и даже вакуум «пустого» пространства. Считалось, что волны света распространяются в эфире подобно тому, как звуковые волны распространяются в воздухе, и следовательно, скорость волн света надо измерять относительно эфира. При этом, с точки зрения разных наблюдателей, движущихся относительно эфира, воспринимаемый ими свет распространяется с разной скоростью, но скорость распространения света относительно эфира всегда постоянна. В частности, по мере движения Земли вокруг Солнца через эфир скорость света, измеренная в направлении движения Земли сквозь эфир (то есть когда мы движемся в направлении источника света), должна быть выше, чем скорость света в направлении, перпендикулярном движению (то есть когда мы не движемся к источнику). В 1887 году Альберт Майкельсон, впоследствии первый американский лауреат Нобелевской премии по физике, совместно с Эдвардом Морли выполнил в Кейсовской школе прикладных наук (ныне Универститет Кейс Вестерн Резерв) в Кливленде очень тонкий эксперимент. Они сравнили скорость света в направлении движения Земли и в перпендикулярном направлении. К их великому удивлению, скорости в обоих направлениях в точности совпали! С 1887-го по 1905 год было предпринято несколько попыток объяснить результат эксперимента Майкельсона и Морли. Наиболее известной из них была попытка голландского физика Хендрика Лоренца, который предположил, что при движении сквозь эфир объекты сокращаются в направлении движения, а ход часов замедляется. Но в своей знаменитой статье, опубликованной в 1905 году, никому тогда не известный клерк швейцарского патентного бюро Альберт Эйнштейн заметил, что необходимость в самой идее эфира отпадает, если отказаться от представления об абсолютном времени. Выдающийся французский математик Анри Пуанкаре высказал похожую идею спустя несколько недель после Эйнштейна. Аргументы Эйнштейна оказались более физичными, чем соображения Пуанкаре, который рассматривал проблему с чисто математической точки зрения. Слава за открытие новой теории досталась Эйнштейну, но не забыт и важный вклад Пуанкаре в ее создание. Фундаментальным постулатом эйнштейновской теории относительности было утверждение, что законы науки должны быть одинаковыми для любого свободно движущегося наблюдателя независимо от его скорости. Это было справедливо и для законов движения Ньютона, но Эйнштейн распространил эту идею на теорию Максвелла и скорость света: все наблюдатели должны измерять одно и то же значение скорости света независимо от того, как быстро они движутся. Эта простая идея имела ряд замечательных следствий. Пожалуй, наиболее известными из них оказались а) эквивалентность массы и энергии, заключенная в знаменитом уравнении E = mc2 (где E – это энергия, m – масса, а c – скорость света), и б) закон, согласно которому ничто не может двигаться быстрее света. Эквивалентность массы и энергии означает, что связанная с движением объекта энергия увеличивает его массу. Другими словами, чем быстрее движется объект, тем труднее дается дальнейшее увеличение его скорости. В реальности этот эффект существен только для объектов, движущихся со скоростью, близкой к скорости света. Например, масса объекта, движущегося со скоростью в 10 % скорости света, больше обычной всего лишь на 0,5 %, в то время как при скорости в 90 % скорости света масса объекта оказывается более чем в два раза больше его нормальной массы. По мере приближения скорости объекта к скорости света масса объекта возрастает все быстрее, и поэтому для дополнительного ускорения требуется все больше энергии. Согласно теории относительности объект никогда не сможет достичь скорости света, потому что с приближением к ней его масса будет стремиться к бесконечности, и следовательно, согласно принципу эквивалентности массы и энергии для разгона до скорости света потребуется бесконечная энергия. Именно по этой причине любой рядовой объект обречен вечно двигаться медленнее, чем свет. Только свет или другие волны, не имеющие собственной массы, могут двигаться столь стремительно. Не менее замечателен вклад теории относительности в характер наших представлений о пространстве и времени: она произвела настоящую революцию. По Ньютону, если послать импульс света из одного места в другое, то время, за которое этот импульс достигнет цели, будет одним и тем же с точки зрения разных наблюдателей, потому что оно абсолютно. А вот пройденное светом расстояние, согласно измерениям разных наблюдателей, будет различаться, потому что пространство не является абсолютным. Поскольку скорость света равна пройденному светом расстоянию, деленному на затраченное время, то значения скорости света, измеренные разными наблюдателями, будут различаться. С другой стороны, в теории относительности все наблюдатели должны получить одинаковое значение скорости света. При этом пройденное светом расстояние будет разным для разных наблюдателей, и следовательно, измерения разных наблюдателей должны дать разные значения затраченного светом времени. Затраченное светом время равно пройденному светом расстоянию (которое оказывается разным для разных наблюдателей), деленному на скорость света (которая одинакова для всех наблюдателей). Другими словами, теория относительности положила конец идее абсолютного времени! Она постулировала, что мера времени у каждого наблюдателя, задаваемая его часами, своя, и даже если разные наблюдатели используют совершенно одинаковые часы, они необязательно получат одинаковые значения для измеряемого интервала времени. Каждый наблюдатель может использовать радар для определения места и времени того или иного события. Для этого наблюдатель отправляет радиоимпульс или импульс света и измеряет время приема частично отраженного импульса. Временем события считается середина интервала между отправлением исходного импульса и приемом отраженного импульса; расстояние до события определяется как половина времени, затраченного на ожидание приема отраженного импульса, умноженная на скорость света. (Под событием подразумевается нечто, произошедшее в некой точке пространства в некоторый момент времени.) Суть этого описания иллюстрирует рисунок 2.1, это пример пространственно-временной диаграммы. Прибегнув к помощи радара, движущиеся относительно друг друга наблюдатели приписывают одному и тому же событию разные время и положения. Измерения ни одного из наблюдателей нельзя считать более правильными, чем измерения какого бы то ни было другого наблюдателя, но все измерения взаимосвязаны. Любой наблюдатель может точно вычислить время и положение, которые припишет данному событию любой другой наблюдатель, при условии, что ему известна относительная скорость этого наблюдателя. В настоящее время этот метод используется для точного измерения расстояний, потому что время мы умеем измерять точнее, чем длину. Действительно, ведь метр определяется как расстояние, которое свет проходит за 0,000000003335640952 секунды по цезиевым часам. (Это число выбрано, чтобы обеспечить соответствие историческому определению метра как расстояния между двумя метками на платиновом эталоне, который хранится в Париже.) С таким же успехом можно использовать и более удобную единицу длины под названием «световая секунда». Она определяется просто как расстояние, которое свет проходит за одну секунду. В теории относительности расстояния определяются через время и скорость света, и отсюда непосредственно следует, что каждый наблюдатель будет измерять одну и ту же скорость света (эта скорость по определению равна 1 метру в 0,000000003335640952 секунды). При этом нет необходимости вводить понятие эфира, присутствие которого, как показал опыт Майкельсона и Морли, все равно невозможно обнаружить. Но теория относительности требует от нас радикального пересмотра наших представлений о пространстве и времени. Приходится признать, что время не является полностью отделенным и независимым от пространства: они образуют единый объект под названием пространство-время. Наш повседневный опыт говорит нам, что положение точки в пространстве можно описать тремя числами, или координатами. Например, мы можем сказать о точке в комнате, что она расположена в семи метрах от одной стены, трех метрах от другой стены и на высоте пяти метров над полом. Или, например, можно сказать, что некая точка расположена на определенных широте и долготе и на определенной высоте над уровнем моря. Мы можем использовать любые три подходящие координаты, хотя, конечно, в каждом конкретном случае их практическая применимость ограничена. Например, не очень-то удобно определять положение Луны, указав расстояние в километрах к северу и к западу от площади Пикадилли, а высоту – в метрах над уровнем моря. Положение Луны лучше описывать через ее расстояния от Солнца и от плоскости орбит планет, угол между линией, соединяющей Луну и Солнце, и линией, соединяющей Солнце с близкой к нему звездой, например альфой Центавра. Но такие координаты не очень годятся для описания положения Солнца в нашей Галактике или положения нашей Галактики в местной группе галактик. В сущности, всю Вселенную можно описать как набор перекрывающих друг друга областей, в каждой из которых для определения положения заданной точки можно использовать свою систему из трех координат.
Перейти к странице:
Подписывайся на Telegram канал. Будь вкурсе последних новинок!