Часть 13 из 38 В начало
Для доступа к библиотеке пройдите авторизацию
В рабочем пространстве, каким его видел Бернард Баарс, гомункула и вовсе нет. За происходящим в глобальном рабочем пространстве следит не живущий у нас в голове человечек, а группа других бессознательных процессоров, которые получают транслированное им сообщение и действуют соответственно, каждый в пределах своей компетенции. В результате обширного обмена сообщениями, отобранными за значимость, возникает коллективный разум. Идея не нова — она возникла еще при зарождении искусственного интеллекта, когда исследователи хотели заставить подпрограммы обмениваться данными через общую «классную доску», структуру для хранения данных, идентичную области обмена данными в персональном компьютере. Рабочее пространство сознания — это и есть область обмена данными, только для мозга.
Тэнова узкая сцена, на которой может выступать не более одного актера одновременно, прекрасно иллюстрирует еще одну идею с долгой историей. Согласно этой идее, сознание выросло из системы ограниченной мощности, способной работать лишь с одной мыслью одновременно. Во время Второй мировой войны британский психолог Дональд Бродбент придумал более совершенную метафору, которую позаимствовал из только-только появившейся теории обработки информации5. Изучая летчиков, Бродбент обнаружил, что даже после обучения они с трудом способны воспринимать два одновременных речевых потока, по одному на каждое ухо. Следовательно, предположил Деннет, сознательное восприятие должно иметь «канал ограниченной емкости» — бутылочное горлышко, в котором обрабатывается только один стимул одновременно. Последовавшее за этим открытие моргания внимания и психологического рефракторного периода, о которых шла речь в главе 2, было воспринято как подтверждение этой идеи: пока наше внимание занято первым стимулом, мы не замечаем ничего вокруг. Современные когнитивные психологи придумали множество метафор, которые в общем означают то же самое, и называли доступ в сознательный опыт то «центральным бутылочным горлышком»6, то «вторым этапом обработки»7, в общем, VIP-залом, в который допускаются лишь немногие избранные.
Третья метафора появилась в 60—70-е годы XX века и изображала сознание как «систему наблюдения» высокого уровня, наделенного всей полнотой власти руководителя, который контролирует поток информации во всей нервной системе8. Как заметил Уильям Джеймс в своем шедевральном труде «Принципы психологии» (1890), сознание похоже на «орган, добавленный, чтобы управлять нервной системой, которая стала чересчур сложна и потому не может регулировать сама себя»9. Понятое буквально, это утверждение отдает дуализмом: сознание ведь не побочное добавление к нервной системе, а полноценный участник и часть процесса. В этом смысле наша нервная система и впрямь совершает подвиг и «регулирует сама себя», но только с учетом наличия иерархии. Высшие центры префронтальной коры, самые свежие плоды эволюции, управляют низкоуровневыми системами в задних областях коры и в субкортикальном ядре, причем зачастую подавляют их10.
Нейропсихологи Майкл Познер и Тим Шаллис предположили, что информация становится осознана всякий раз, когда происходит ее репрезентация в рамках этой высокоуровневой управляющей системы. Сегодня мы знаем, что это предположение не вполне верно: как уже известно из главы 3, даже сублиминальный, неувиденный стимул способен частично запустить некоторые подавляющие и регулирующие функции системы контроля и управления11. И все же любая информация, достигшая сознательного рабочего пространства, обретает способность весьма глубоко и эффективно управлять всеми нашими мыслями. Управляющее внимание — это лишь одна из многих систем, куда поступают данные из глобального рабочего пространства. В результате выходит, что все, что мы осознаем, способно направлять наши решения и намеренные действия, а также порождать чувство, будто бы эти решения и действия находятся под контролем. Системы речи, долгосрочной памяти, внимания, волевая сфера — все это части внутреннего круга взаимосвязанных механизмов, между которыми идет обмен осознанной информацией. Благодаря этой архитектуре рабочего пространства все, что мы осознаем, может быть произвольно перенаправлено в нужную точку и превратиться в тему высказывания, в узелок в памяти, переместиться в центр внимания или стать основой для следующего добровольного действия.
Модули и не только
Вместе с психологом Бернардом Баарсом я верю, что сознание, по сути, сводится к функциям рабочего пространства: оно делает актуальную информацию общедоступной и передает ее в самые разные системы мозга. В принципе эти функции вполне можно воспроизвести на небиологической основе, задействовав, например, компьютер на кремниевых платах. Однако на самом деле все совершаемые сознанием операции далеко не тривиальны. Мы до сих пор не знаем точно, каким образом мозг их выполняет или как заставить искусственный механизм проделать то же самое. Компьютерная программа устроена жестко, модульно: каждая операция сводится к тому, что машина получает те или иные данные и преобразовывает их в соответствии со строгими правилами, после чего выдает строго определенную информацию. Речевой процессор может в течение какого-то времени удерживать фрагмент информации (например, абзац текста), но компьютер как единое целое не способен решить, важен ли этот фрагмент информации с глобальной точки зрения, равно как не способен донести его до других программ. Вот и получается, что компьютер мыслит узко. В работе он близок к совершенству, однако информация в пределах одного модуля, пусть сколь угодно умного, не может быть передана другим. Для обмена информацией у компьютерных программ есть разве что такой рудиментарный механизм, как область обмена данными, да и то происходит этот обмен под контролем разумного deus ex machina — человека.
А вот кора головного мозга, в отличие от компьютера, решила эту проблему и освоила модульный набор процессоров и гибкую систему маршрутизации. В коре существует масса участков, каждый из которых выполняет конкретные процессы. Существуют, например, целые области, состоящие исключительно из нейронов, распознающих лица и реагирующих, лишь когда на сетчатку поступит изображение лица12. В теменной и моторной коре есть участки, отвечающие за конкретные моторные функции или за те части тела, которые их выполняют. Есть сектора, занимающиеся еще более отвлеченными понятиями и кодирующие наши знания, связанные с числами, животными, предметами и глаголами. Если теория рабочего пространства верна, сознание могло возникнуть именно затем, чтобы соединить эти модули между собой. Посредством глобального нейронного рабочего пространства информация может свободно поступать в модульные процессоры мозга. Эта глобальная доступность информации и есть то, что мы субъективно ощущаем как наличие сознания13.
Схема эта дарует очевидные эволюционные преимущества. Модульная структура полезна потому, что различные области знаний требуют различных настроек коры головного мозга: цепочки, отвечающие за ориентацию в пространстве, выполняют одни операции, а цепочки, занимающиеся распознаванием пейзажей или хранением в памяти событий прошлого, — совсем другие. Однако для принятия решений зачастую необходимы бывают данные сразу из нескольких источников. Представьте себе слона в саванне. Слон хочет пить. Он выживет, если доберется до следующего источника. Решение идти вперед, к отдаленной, невидимой еще точке, может быть основано на наиболее эффективном использовании доступной информации, в том числе ментальной карте пространства, зрительном распознавании приметных деревьев и троп, а также памяти о том, как в прошлом ему удавалось или не удавалось найти воду. Жизненно важные долгосрочные решения, под влиянием которых животному предстоит пуститься в тяжелейшее путешествие под палящим африканским солнцем, следует принимать на основании всех имеющихся источников данных. Сознание могло развиться (миллиарды лет назад) именно затем, чтобы беспрестанно черпать из всех источников любую информацию, какая только может потребоваться для удовлетворения наших текущих потребностей14.
Развитая сеть коммуникаций
Как следует из этих эволюционных доводов, сознание подразумевает связность. Для гибкого обмена информацией требуется особая нейронная архитектура, которая свяжет отдаленные друг от друга специализированные области коры в согласованную структуру. А есть ли у нас в мозгу подобная структура? Еще в конце XIX века испанский гистолог Сантьяго Рамон-и-Кахаль, исследовавший строение мозга, заметил, что у мозговых тканей есть одна любопытная особенность. В отличие от кожи, клетки которой напоминают плотно уложенные детали мозаики, мозг состоит из чрезмерно удлиненных клеток, или нейронов. Нейроны снабжены длинными отростками-аксонами до нескольких метров длиной — ничего подобного ни у каких других клеток не встречается. Один-единственный нейрон моторной коры головного мозга может протянуть свои аксоны до самого позвоночника, чтобы командовать конкретными мускулами. Что еще интереснее, Кахаль обнаружил, что клетки, воздействующие на удаленные от них участки, расположены в коре довольно плотно (рис. 25) и образуют тонкий слой, выстилающий собой поверхность обоих полушарий мозга. Находящиеся в коре головного мозга нервные клетки пирамидальной формы зачастую дотягивались аксонами до задней части мозга или до другого полушария. Взятые вместе, эти аксоны образовывали плотные волокна ткани, складывающиеся в кабеля, насчитывающие по нескольку миллиметров в диаметре и имеющие до нескольких сантиметров в длину. Сегодня мы можем наблюдать эти переплетающиеся волокна тканей живого мозга на магнитно-резонансных томограммах.
Рисунок 25. Длинные нейронные связи могут способствовать существованию глобального нейронного пространства. Известный специалист по анатомии нервной системы Сантьяго Рамон-и-Кахаль, который в XIX веке препарировал человеческий мозг, уже тогда заметил, что нейроны коры головного мозга велики, имеют пирамидальную форму и аксонами дотягиваются до самых дальних уголков мозга (слева). Нам известно, что эти длинные связи используются для передачи сенсорной информации в насыщенную огромным количеством связей сеть теменных, височных и префронтальных областей (справа). Если эти связи будут нарушены, может возникнуть пространственное игнорирование, то есть утратится способность сознавать увиденное в той или иной части пространства
Следует заметить, что не все области мозга связаны между собой одинаково плотно. Сенсорные области, например зрительная область V1, как правило, отличаются избирательностью и устанавливают малое количество связей, выбирая для этого в основном соседние клетки. Ранние зрительные области поддерживают жесткую иерархию: область V1 сообщается в основном с областью V2, та, в свою очередь, передает данные в области V3 и V4 и так далее. В результате первичные зрительные операции функционально закапсулированы: зрительные нейроны изначально получают лишь небольшую долю тех данных, что поступили на сетчатку, и обрабатывают их в относительном уединении, ничего «не зная» об общей картине.
В высших ассоциативных зонах коры головного мозга связи, впрочем, перестают быть локальными и точечными и объединяют уже не только ближайших соседей. Когнитивные операции перестают быть модульными. В префронтальной коре — передней части головного мозга — преобладают нейроны с длинными аксонами, передающими информацию на большие расстояния. Этот участок связан со множеством других областей нижней теменной доли, средней и задней височной долей, а также фронтальной и задней частей поясной извилины, расположенных на срединной линии мозга. Выяснилось, что эти области играют роль основных узлов коммуникаций мозга, являются его главными центрами связи15. Между собой они соединяются каналами, передающими информацию в обоих направлениях: если область А передает данные в область В, то область В почти наверняка передаст те же данные обратно в область А (рис. 25). Кроме того, длинные связи нередко образуют треугольник: если область А передает данные в области С и В, то С и В, в свою очередь, почти наверняка будут поддерживать связь друг с другом16.
Эти области коры имеют сильную связь с другими участниками процесса — например, центральными латеральными и внутрислойными ядрами таламуса (отвечающими за внимание, активное внимание и синхронизацию), базальными ганглиями (принятие решений и действие) и гиппокампом (запоминание эпизодов из жизни и дальнейшее извлечение их из памяти). Особенно важны каналы, связывающие кору мозга со зрительным бугром, таламусом. Зрительный бугор представляет собой совокупность ядер, каждое из которых связано небольшой петлей как минимум с одним, а нередко и с несколькими областями коры. Практически все связанные напрямую участки коры передают информацию и по параллельным каналам, через глубинные структуры зрительного бугра17. Информация, передаваемая зрительным бугром в кору, важна еще и тем, что сигналы возбуждают кору головного мозга и поддерживают ее в постоянном активном состоянии18. Как мы еще увидим, снижение активности зрительного бугра и каналов связи с ним является одним из важнейших условий наступления комы и вегетативных состояний, в которых мозг оказывается лишен разума.
Таким образом, в основе рабочего пространства лежит плотная сеть взаимосвязанных областей мозга — децентрализованная структура, не имеющая единого физического центра. Находящийся на вершине иерархии «совет директоров», элита из элит, распределенная по самым разным уголкам мозга, синхронно реагирует на происходящее и постоянно обменивается бесчисленными сообщениями. Что поразительно: эта сеть связанных между собой высокоуровневых зон, в первую очередь относящихся к префронтальной и теменной долям, совпадает с сетью, которую я описал в главе 4, упомянув, что ее резкая активация является первым автографом сознательной работы мозга. Теперь мы можем разобраться в том, почему эти ассоциативные зоны систематически возбуждаются всякий раз, когда в фокус нашего внимания попадает фрагмент информации: эти области обладают как раз такими далеко идущими связями, которые необходимы, чтобы передавать сообщения в мозгу на большие расстояния.
Входящие в эту далеко распространившуюся сеть коры пирамидальные нейроны хорошо приспособлены к выполнению своей задачи (рис. 26). Их клеточные тела выросли, чтобы вместить всю сложную молекулярную машинерию, необходимую для поддержания жизнедеятельности длинных аксонов. Вспомним, что в ядре клетки хранится ДНК с генетической информацией, однако считываемые рецепторные молекулы должны каким-то образом добираться до синапсов, которые могут отстоять от клетки на несколько сантиметров. Крупные нервные клетки, способные обеспечить исполнение этой непростой задачи, расположились во втором и третьем слоях коры головного мозга, отвечающих, в частности, за межполушарные каналы связи, переносящие информацию из одного полушария в другое и обратно.
Еще в 20-е годы XX века австрийский исследователь-нейроанатом Константин фон Экономо заметил, что области эти распределены в мозгу неравномерно. Значительно толще они становятся в префронтальной и поясной коре, а также в ассоциативных областях теменной и височной долей, то есть на участках, которые имеют массу внутренних связей и активируются в ходе сознательного восприятия и обработки данных.
Позже Гай Элстон из Квинсленда и Хавьер ДеФелипе из Испании отметили необычайную величину дендритов, то есть принимающих антенн этих гигантских нейронов рабочего пространства. За счет величины дендритов нейроны особенно успешно принимали информацию, поступающую из множества отдаленных областей мозга19. С помощью дендритов (от греческого слова «дерево»), то есть ветвящихся структур — приемников сигнала, пирамидальные нейроны получают информацию от других нейронов. Там, где у подающих сигналы нейронов развивается синапс, у принимающего нейрона появляется микроскопическое образование, называемое отростком и представляющее собой грибообразный вырост. Отростки плотно покрывают ветвящийся древовидный дендрит. Элстон и ДеФелипе продемонстрировали важнейший для гипотезы рабочего пространства факт: оказывается, в префронтальной коре дендриты значительно крупнее, а отростки — гораздо многочисленнее, чем в задних отделах мозга (рис. 26).
Рисунок 26. Крупные пирамидальные нейроны приспособились к трансляции осознанной информации на большие расстояния, особенно в префронтальной коре. Кора головного мозга имеет слоистую структуру, и в слоях II и III располагаются крупные пирамидальные нейроны с длинными аксонами, необходимыми для передачи информации в отдаленные регионы. В префронтальной коре эти слои оказываются значительно толще, нежели в сенсорных областях (сверху). Большая толщина слоев II и III характерна примерно для тех же областей, которые проявляют максимальную активность во время сознательного восприятия. Кроме того, эти же нейроны приспособились к восприятию поступающих с большого расстояния сообщений. Древовидные дендриты (внизу), получающие сообщения из других областей, в префронтальной коре становятся значительно крупнее, нежели во всех прочих областях. Все перечисленные средства адаптации к обмену информацией на большом расстоянии выражены в человеческом мозгу сильнее, нежели в мозгу других приматов.
В человеческом мозгу эти механизмы адаптации к протяженным коммуникациям заметны особенно хорошо20. Наши префронтальные нейроны ветвятся сильнее и содержат больше отростков, чем нейроны наших родственников-приматов. У них дендритные джунгли находятся под контролем семейства генов, которые мутировали особым образом только у человека21. В этот перечень входит FoxP2 — известнейший ген, две мутации которого произошли только в ветви Homo22. Этот ген управляет нашими речевыми структурами23, а сбой в нем ведет к обширному поражению механизмов артикуляции и речи24. В семейство FoxP2 входят несколько генов, отвечающих за формирование нейронов, дендритов, аксонов и синапсов. Воспользовавшись всем богатством возможностей, которые дарует генная инженерия, ученые вырастили мышь с двумя человеческими мутациями FoxP2 — пирамидальные нейроны у этой мыши заветвились нетипичными, по-человечески крупными дендритами, а сама мышь стала проявлять недюжинные способности к учению (правда, все же не заговорила)25.
Благодаря гену FoxP2 и всему его семейству каждый нейрон префронтальной коры у человека содержит по 15 тысяч отростков и более. Это значит, что он связан почти с таким же количеством других нейронов, по большей части расположенных в очень отдаленных частях коры и зрительного бугра. Похоже на идеальный адаптивный механизм — можно собирать информацию по всему мозгу, а если она окажется достаточно важна, передавать ее снова в тысячи других точек.
Предположим, мы получили возможность проследить все связи, которые активируются, когда мы осознаем и распознаем чье-то лицо — вроде как ФБР прослеживает звонок, идущий через несколько последовательных коммуникационных узлов. Что мы увидим? Вначале входящий образ будет приведен в порядок очень короткими каналами связи, расположенными в сетчатке глаза. Сжатый образ последует дальше по толстому кабелю оптического нерва, достигнет зрительного бугра и отправится в первичную зрительную область затылочной доли. Местные U-образные волокна передадут его в несколько кластеров нейронов правой веретенообразной извилины, где исследователи обнаружили кластеры распознания лиц, то есть участки нейронов, настроенные на работу с лицами. Вся эта деятельность будет происходить без участия сознания. А дальше? Куда дальше поведут связи? Живительный ответ на этот вопрос отыскала швейцарская исследовательница Стефани Кларк26: удаленные аксоны вдруг разом отпускают зрительную информацию распространяться практически по всем уголкам мозга. Крупные каналы, исходящие из правой нижней височной доли, напрямую за один синаптический импульс отправят данные в отдаленные области ассоциативной коры, в том числе в другом полушарии. Информация станет накапливаться в нижней фронтальной коре (центр Брокa) и в височном отделе ассоциативной коры (зона Вернике). Обе эти зоны являются ключевыми пунктами речевой сети человеческого мозга, поэтому на данном этапе к поступающей зрительной информации начнут присоединяться слова.
Сами по себе эти области являются частью обширной сети рабочих пространств, и потому информация может распространиться далее и попасть во внутренний круг высокоуровневых управляющих систем, циркулируя туда-сюда в группах активных нейронов. Если моя теория верна, именно угодив в эту плотную структуру, информация попадает в сознание.
Зарождение осознанной мысли
Попробуйте прикинуть, сколько осознанных мыслей у вас было всего: припомните все лица, предметы, сцены, которые можете узнать, все оттенки когда-либо испытанных эмоций, от непреодолимой злобы до легкого злорадства, каждый уголок на карте мира, каждый исторический факт, каждую математическую формулу или каждую сплетню, неважно, правдивую или лживую, которую вы когда-либо слышали или могли услышать, вспомните произношение и значение каждого слова, которое вы знаете или могли знать на любом языке… Бесконечный список! И тем не менее все это может в следующий миг всплыть у вас в сознании. Но как может быть закодирован в нейронном пространстве такой огромный объем разнородной информации? Что представляет собой нейронный код сознания, как он поддерживает столь обширный, практически бесконечный набор идей?
Нейробиолог Джулио Тонони отмечает, что один лишь объем нашего репертуара по части идей уже служит ограничителем для нейронного кодирования осознанных мыслей27. В основе этого кода должна лежать абсолютно невероятная дифференциация: комбинации активных и бездействующих нейронов в глобальном рабочем пространстве должны складываться в миллиарды разных рисунков деятельности. Каждое возможное осознанное состояние психики должно иметь собственный рисунок нейронной активности, отличный от всех прочих. В результате осознанные состояния должны быть четко разграничены: это либо птица, либо самолет, либо Супермен, но никак не все сразу одновременно. Для четкого мышления с мириадами потенциальных мыслей нужен мозг с мириадами потенциальных состояний.
В книге «Организация поведения» (1949) Дональд Хебб уже предложил провидческую теорию относительно того, каким образом кодируются мысли в мозгу. Хебб ввел концепцию «совокупностей клеток» — групп нейронов, которые связаны между собой возбуждающими синапсами и потому сохраняют активность в течение долгого времени после того, как исчезнет внешний стимул. «Любая часто повторяющаяся характерная стимуляция, — предполагал Хебб, — повлечет за собой медленное развитие совокупности клеток, диффузной структуры, объединяющей в себе клетки коры и промежуточного мозга (а также, возможно, базальных ганглиев переднего мозга) и способной в течение краткого времени функционировать как замкнутая система»28.
Входящие в совокупность клеток нейроны поддерживают друг друга, посылая возбуждающие импульсы. В результате на ограниченном участке нейронного пространства возникает всплеск активности. А поскольку такие местные совокупности клеток могут активироваться независимо друг от друга и в самых разных частях мозга, в результате мы имеем комбинаторный код, с помощью которого можно изобразить миллиарды состояний. Так, любой видимый объект можно представить как комбинацию цвета, размера и фрагментов геометрических фигур. Записи деятельности коры головного мозга подтверждают: образ, к примеру, огнетушителя закодирован в мозгу как сочетание активных «участков», включающих в себя несколько сот нейронов каждый и составляющих репрезентацию каждой отдельной части огнетушителя (рукоятка, баллон, шланг и т. д.)29.
В 1959 году пионер исследований в области искусственного интеллекта Джон Селфридж ввел в обиход еще одну полезную метафору — пандемониум30. Селфридж представлял мозг в виде иерархии специализированных «демонов», каждый из которых предлагает на пробу собственную интерпретацию входящего образа. Его правоту подтвердили три десятка лет исследований в области нейрофизиологии, и в частности, открытие зрительных клеток, настроенных на линии, цвета, глаза, лица и даже американских президентов и голливудских звезд. В модели Селфриджа демоны перекрикивались, сообщая друг другу избранные ими интерпретации в соответствии с тем, насколько им соответствовал воспринимаемый образ. Их крик последовательно проходил через все более абстрактные механизмы, нейроны реагировали на все более абстрактные качества образа — так, например, если три демона кричали о наличии глаз, носа и волос, то проснувшийся четвертый демон кодировал все это как лицо. Прислушиваясь к наиболее громко озвучиваемым вариантам, система принятия решений могла сформулировать мнение о наблюдаемом объекте — оно же сознательное восприятие.
Позже к пандемониум-модели Селфриджа было сделано одно важное дополнение. Изначально передача данных в ней шла по иерархии строго вверх: демоны кричали только стоящему над ними демону, однако стоящий выше демон никогда ничего не кричал ни стоящим ниже, ни даже другим демонам своего уровня. На практике же нейронные системы не просто передают информацию наверх, но и общаются между собой. В коре головного мозга есть масса петель и обоюдонаправленных проекций31. Друг с другом разговаривают даже отдельные нейроны: если нейрон ? сигналит нейрону ?, то нейрон ?, скорее всего, сигналит нейрону ?32. Связанные между собой нейроны любого уровня поддерживают друг друга, а нейроны, находящиеся на вершине иерархии, могут связываться с подчиненными, поэтому объемы данных, идущих сверху вниз, как минимум не уступают объемам данных, идущих снизу вверх.
Имитации и математические модели реалистичных «нейросетевых» моделей с большим количеством таких петель показывают, что у всех у них есть одно очень полезное свойство. Стоит возбудиться подгруппе нейронов, и вся группа самоорганизуется и приходит в аттракторное состояние: группы нейронов генерируют воспроизводимый рисунок активности, который остается стабилен в течение долгого времени33. Как и предполагал Хебб, взаимосвязанные нейроны склонны к образованию стабильных совокупностей клеток.
В качестве кодовых схем эти воспроизводящиеся сети обладают еще одним достоинством: они зачастую приходят к консенсусу. В нейронных сетях с повторяющимися связями нейроны, в отличие от демонов Селфриджа, не просто кричат друг другу, а договариваются между собой и приходят к единой интерпретации воспринимаемой сцены. Наиболее возбужденные нейроны взаимно поддерживают друг друга и постепенно подавляют прочие альтернативные интерпретации. В результате им удается восстановить недостающие детали и отсечь помехи. После нескольких итераций закодированная нейронами картина представляет собой очищенную и интерпретированную версию воспринятого образа. Картина эта отличается большей стабильностью и устойчивостью к помехам, последовательна внутри себя и явственно отличима от прочих аттракторных состояний. Фрэнсис Крик и Кристоф Кош описывают эту репрезентацию как победившую в соревновании «нейронную коалицию», причем предполагают, что она является прекрасным двигателем для сознательной репрезентации34.
Слово «коалиция» подводит нас еще к одному важному аспекту, связанному с нейронным кодированием: нейронный код должен быть тесно интегрирован35. Все моменты сознательного восприятия сливаются для нас в одну общую картину. Рассматривая «Мону Лизу» Леонардо да Винчи, мы ведь видим не какого-нибудь там безрукого потрошеного Пикассо с витающей в воздухе улыбкой Чеширского кота и плывущими отдельно глазами. Мы воспринимаем все эти элементы (и множество других в придачу — название, смысл, связь картины с тем, что мы знаем о гениальном да Винчи) и каким-то образом соединяем их в целое. И все-таки каждый из этих элементов изначально обрабатывается конкретной группой нейронов, а сами группы расположены на поверхности вентральной зрительной коры на расстоянии в несколько сантиметров друг от друга. Как же они поддерживают связь?
Вариантов несколько — например, нейроны могут образовывать крупные совокупности. В этом им помогают центры связи высших секторов коры. Эти центры, которые нейробиолог Антонио Дамасио зовет «зонами конвергенции»36, особенно широко распространены в префронтальной коре, однако встречаются и в других секторах передней височной доли, нижней теменной доли и так называемого предклинья, участка медиальной поверхности мозга. Все эти центры отправляют и получают бесчисленное количество сообщений, поддерживая связь с массой отдаленных областей мозга. Таким образом, нейроны этих областей интегрируют информацию в пространстве и времени. Затем многочисленные модули восприятия вырабатывают единую адекватную интерпретацию полученных данных («соблазнительная итальянка»). Эту глобальную интерпретацию можно снова передать в области, из которых были изначально получены сенсорные сигналы. В результате мы получаем единую целую картину. В глобальной передаче данных задействованы нейроны с длинными аксонами, передающими информацию снизу вверх, от префронтальной коры и связанной с ней высокоуровневой сети областей в сенсорные области более низкого уровня, и за счет этого создаются условия, необходимые для возникновения единого состояния сознания, одновременно дифференцированного и интегрированного.
Нобелевский лауреат Джеральд Эдельман назвал передачу данных туда-обратно «повторным входом»37. Опыт построения моделей нейронных сетей позволяет предположить, что повторный вход обеспечивает возможность сложного вычисления оптимальной статистической интерпретации зрительного образа38. Каждая группа нейронов исполняет роль специалиста-статистика, а для того чтобы объяснить свойства получаемой информации, эти группы сотрудничают между собой39. Так, например, «специалист по теням» решает, что темный участок на картине может быть тенью, но только лишь в том случае, если свет падает сверху слева. «Специалист по освещению» соглашается и, вооружившись этой гипотезой, объясняет, почему освещена верхняя часть изображенных предметов. Тут является третий эксперт, который говорит, что с учетом этих двух факторов оставшаяся часть изображения походит на лицо. И так они обмениваются данными до тех пор, пока каждый фрагмент изображения не получит предварительную интерпретацию.
Формирование идеи
Совокупности клеток, пандемониум, конкурирующие коалиция, аттракторы, зоны конвергенции с повторным входом… По всей видимости, в каждой из этих теорий есть крупица истины, и моя собственная теория глобального нейронного пространства во многом основана на этих теориях предшественников40. Я полагаю, что сознательное состояние возникает из стабильной, сохраняющейся в течение нескольких десятых долей секунды активации подгруппы активных нейронов рабочего пространства. Эти нейроны распределены по различным областям мозга и отвечают за различные аспекты одной и той же ментальной репрезентации. Для того чтобы оценить «Мону Лизу», требуется совместная активация миллионов нейронов, работающих с предметами, фрагментами смысла и воспоминаниями.
В процессе доступа в сознательный опыт между этими нейронами происходит двусторонний обмен информацией, реализуемый посредством длинных аксонов нейронов рабочего пространства и представляющий собой во многом параллельные попытки создать согласованную и синхронную интерпретацию. Когда эти процессы сливаются в один, возникает сознательное восприятие. Совокупность клеток, работающая с содержанием этого сознательного восприятия, распределена по всему мозгу, и фрагменты релевантной информации, выделенные той или иной областью мозга, объединяются потому, что под влиянием нейронов с длинными, далеко протянувшимися аксонами все прочие нейроны синхронизируют свою деятельность.
Возможно, синхронность нейронов является главным условием возникновения сознания. Сегодня мы все чаще наблюдаем, как удаленные друг от друга нейроны формируют крупные совокупности, синхронизируя собственные импульсы с фоновыми электрическими колебаниями41. Если эта картина соответствует действительности, тогда кодирующая все наши мысли мозговая сеть должна походить на рой светлячков, огоньки которых мерцают в едином для всей группы ритме. В отсутствие сознания в мозгу могут возникать локальные синхронизированные совокупности клеток — например, когда мы бессознательно кодируем значение слова в языковых сетях левой височной доли. Но префронтальная кора не получает доступа к соответствующему сообщению, поэтому оно не имеет обширного распространения и не проникает в сознание.
Предлагаю вам еще одно умозрительное изображение нейронного кода сознания. Вообразите себе 16 миллиардов нейронов коры вашего головного мозга. Каждый нейрон реагирует на ограниченное количество стимулов. Разнообразие стимулов, вызывающих реакцию, поражает: только в зрительной коре имеются нейроны, реагирующие на лица, руки, предметы, перспективу, формы, линии, кривые, цвета, трехмерность… Когда мы воспринимаем некое изображение, каждая клетка обрабатывает не более нескольких битов информации, но все вместе эти клетки могут создавать репрезентации огромного количества мыслей. В соответствии с моделью глобального рабочего пространства в каждый момент из этого огромного набора возможностей избирается один-единственный вариант, который и попадает в фокус нашего сознания. В этот момент происходит возбуждение всех соответствующих нейронов, которые действуют частично синхронно и подчиняются подгруппе нейронов префронтальной коры.
Важно понять, что в этой схеме кодирования информацию несут и те нейроны, которые молчат и не подают импульсов. Их молчание дает другим понять, что свойство, с которым работают эти нейроны, в данном случае отсутствует или не имеет значения для имеющегося на данный момент ментального образа. Содержание сознания в равной степени зависит как от активных, так и от бездействующих нейронов.
В процессе финального анализа сознательное восприятие можно сравнить с работой скульптора, который берет глыбу мрамора, отсекает большую часть и постепенно проявляет в камне собственное видение. То же и в мозгу: поначалу никак не связанные между собой сотни миллионов нейронов рабочего пространства подают исходные импульсы, но большую их часть мозг заглушает, оставляя активной лишь малую долю этих нейронов. Активная группа нейронов в буквальном смысле слова очерчивает контуры сознательной мысли.
Рисунок, образуемый активными и бездействующими нейронами, может послужить объяснением возникновения второго автографа сознания: волны РЗ, о которой шла речь в главе 4, — скачке положительного напряжения, регистрируемого в верхней части головы накожными датчиками. В период сознательного восприятия небольшая группа нейронов рабочего пространства становится активна и влияет на содержание наших мыслей, а активность других групп подавляется. Активные нейроны передают сообщение по коре головного мозга, посылая электрические импульсы по длинным аксонам, но в большинстве случаев получателями этих сигналов оказываются подавленные нейроны. В этом случае сигналы действуют как глушилка, словно бы сообщая таким группам: признаки, за которые отвечаете вы, сейчас неважны, поэтому помолчите, пожалуйста. В кодировании сознательной идеи принимают участие небольшие участки активных и синхронизированных между собой клеток, а также обширные пространства, занятые нейронами с подавленной активностью.
Геометрия клетки такова, что синаптический разряд активного нейрона движется от вынесенных наружу дендритов к телу клетки. Нейроны одной группы расположены параллельно по отношению друг к другу, их электрические заряды складываются, и на поверхности головы возникает медленная волна с отрицательным зарядом, местоположение которой соответствует местоположению областей, кодирующих сознательный стимул42. Но нейронов с подавленной активностью по-прежнему больше — и их разряды, складываясь, образуют электрический разряд с положительным потенциалом. Число подавленных нейронов превосходит количество активных во много раз, поэтому в итоге разряды с положительным потенциалом складываются в большую волну на поверхности головы — в волну РЗ, которую мы с легкостью фиксируем всякий раз при возникновении доступа в сознательный опыт43. Вот и все — мы объяснили появление второго автографа сознания.
Моя теория прекрасно объясняет, почему волна РЗ так сильна, универсальна и воспроизводится снова и снова: она указывает в основном на то, что не имеет отношения к нашим текущим мыслям. Содержимое сознания связано не с массированным положительным разрядом, а с локальным отрицательным. Эдвард Фогель и его коллеги из Университета Орегона подтвердили эту идею, опубликовав работу, в которой чудесно продемонстрировали связь отрицательного напряжения в теменной коре с текущей рабочей памятью, содержащей пространственные структуры44. Всякий раз, когда мы запоминаем несколько предметов, слабое отрицательное напряжение позволяет точно определить, сколько предметов мы видели и где они находились. Напряжение сохраняется ровно столько, сколько мы помним о предметах, усиливается, когда мы заносим предметы в память, становится особенно интенсивным, когда мы уже не можем удержать все предметы в памяти, исчезает, когда мы забываем о них, и всегда неизменно указывает на то, сколько предметов мы помним. В работе Эдварда Фогеля отрицательное напряжение в точности очерчивает границы сознательной репрезентации в полном соответствии с теорией рабочего пространства.
Имитация активации сознания
Науке о реальности недостаточно больше феноменологического ответа на вопрос «как?» — теперь ей требуется ответ математический.
Гастон Башляр. Формирование аналитического ума, 1938