Поиск
×
Поиск по сайту
Часть 9 из 24 В начало
Для доступа к библиотеке пройдите авторизацию
Существует несколько путей образования мира с подповерхностным океаном, покрывающим каменное и, возможно, металлическое ядро. Большая планета вроде Айсхейма может начинать со слоя твёрдого льда, покрывающего каменное ядро, но остаточное тепло от образования планеты или большое количество тепла, выделяемого за счёт радиоактивного распада в её ядре, может растопить этот лёд в количестве, достаточном для создания океана. В качестве альтернативы, как и в случае с Европой и другими лунами в нашей Солнечной системе, внешний процесс наподобие приливной деформации может генерировать достаточно много тепла для поддержания части воды, покрывающей ядро, в жидком состоянии. В этих ситуациях тепло, которое поддерживает подповерхностный океан, создаёт слой жидкой воды «снизу вверх». Можно также представить себе мир, на поверхности которого когда-то существовали жидкие океаны, но он охладился достаточно сильно, чтобы его внешний слой воды был заморожен, а внутренняя вода оставалась жидкой. События «Земля-снежок» в истории нашей собственной планеты показывают, что такое может случиться. Вообще, в истории Земли были моменты, когда её можно было бы классифицировать как мир подповерхностного океана. Основная мысль в данном случае заключается в том, что структура планеты развивается в последовательности «сверху вниз», при этом слой льда образуется поверх жидкого океана. События «Земля-снежок» вновь напоминают нам, что планеты могут перемещаться взад-вперёд между различными категориями водных миров, которые мы выделили. Кроме того, мы должны быть готовы к тому, что условия для развития жизни могут различаться в зависимости от того, исследуем ли мы спутник планеты, подвергающийся приливному разогреву, или планету на собственной орбите, не подвергающуюся подобному нагреву. В этом месте мы сталкиваемся с одним из тех вопросов без ответа, которые иллюстрируют пробелы в наших знаниях об астрономических объектах, потому что дело в том, что мы на самом деле не понимаем особенностей тепловых потоков в небесных телах с подповерхностными океанами. Существует общее мнение о том, что жидкая вода будет переносить тепло вверх за счет конвекции. Однако неизвестно, будет ли конвекция происходить ещё и во внутренней, каменной мантии и металлическом ядре, как на Земле. Некоторые теоретики утверждают, что даже такой маленький мир, как Европа, может поддерживать конвекцию в мантии и, следовательно, обладать такими глубоководными гидротермальными источниками, которые мы обсуждали в предыдущей главе. Чисто теоретически мы предположим, что это так, и рассмотрим только миры с подповерхностными океанами, где существуют глубоководные гидротермальные источники. Давайте рассмотрим, как могла бы развиваться жизнь в таком мире, и в честь открытий космического аппарата «Галилео» давайте назовём наш воображаемый мир Новой Европой. Лингвистическое отступление Вероятно, вам известно, что в 2006 году небольшая группа астрономов на заседании Международного астрономического союза, одним из самых глупых решений, когда-либо принятых научным органом, проголосовала за «понижение» Плутона до статуса «карликовой планеты». В процессе принятия решения им пришлось совершенно непонятным образом переопределить слово «планета» (полное обсуждение этого голосования приводится в нашей книге «Экзопланеты»[4]). Это решение было проигнорировано многими учёными-планетологами, и в этой книге мы поступим так же. Чтобы читателям было легче понимать наши доводы, мы также сохраним общепринятое различие между «планетой» и «луной», но отметим, что среди учёных-планетологов существует тенденция называть любой объект, включая луны, «планетой», если он достаточно велик, чтобы мог собраться в сферическую форму, и достаточно мал, чтобы не быть звездой. Мы отдаём себе отчёт в том, что называть Луну Земли «планетой» несколько странно, по крайней мере, на первый взгляд, но мы ожидаем, что это соглашение в конечном итоге примут ещё больше астрономов. Жизнь подо льдом Как мы уже не раз отмечали, самая интересная ситуация в водных мирах возникает, когда ядро достаточно велико, чтобы поддерживать тектоническую активность, и из-за этого на поверхности твёрдого ядра имеются горячие источники в районе срединно-океанических хребтов. Многие учёные считают, что жизнь на Земле зародилась в таких источниках в глубоких океанах нашего мира, и они, бесспорно, создают среду, в которой в изобилии имеются энергия и материалы, необходимые для жизни. Давайте рассмотрим планету с горячими источниками на поверхности её ядра и подповерхностным океаном, покрытым слоем льда, — мир, который мы называем Новая Европа. Как мы увидели на примере Айсхейма, явным эволюционным преимуществом для живых организмов будет способность переселяться вдоль жерла горячего источника в те места, где материалы, необходимые для поддержания жизни, будут особенно изобильным. Мы ожидали бы, что это окажется справедливым и для Новой Европы, но у её обитателей будет дополнительная возможность, недоступная айсхеймерам. На Айсхейме передвижение между горячими источниками заблокировано твёрдым льдом, однако на Новой Европе живые организмы могут легко колонизировать новые горячие источники, просто передвигаясь в жидкой воде. По факту мы ожидали бы от них способности мигрировать к разным источникам, подобно тому, как живые организмы на Земле переселяются с острова на остров через поверхность океана. Каждый горячий источник будет представлять собой отдельную экологическую нишу, которую можно колонизировать, и мы ожидаем, что дарвиновская эволюция будет стимулировать развитие различных видов для этих ниш, как и на Земле. Например, различные горячие источники могут выносить на поверхность разные химические смеси, или поддерживать разные температуры, и эти различия приведут к появлению разнообразных видов на дне океана. (Ещё раз вспомните о тиграх и белых медведях.) Картина потоков энергии на Новой Европе была бы аналогична таковой на Айсхейме. Тепловая и химическая энергия выбрасывались бы вверх через гидротермальные источники, а свет от звезды планеты проникал бы в слой льда. Мы можем представить себе формы жизни, которые возникли в жерлах срединно-океанических хребтов и следуют за восходящим потоком энергии и вещества к нижней части ледяного покрова. Он отмечал бы предел их вселенной. Как и на Айсхейме, эволюционное преимущество получат организмы, которые смогут расселиться сквозь лёд и воспользоваться энергией излучения своей звезды. Мы даже можем представить себе несколько способов, позволяющих осуществить такое расселение. Например, в слое льда могут быть трещины и расщелины, по которым может просачиваться вода, несущая с собой микробов. Кроме того, мы знаем, что в мирах с подповерхностным океаном в нашей Солнечной системе (в том числе на спутнике, который мы можем назвать «Старой» Европой) время от времени образуются гейзеры жидкой воды, которые представляют собой ещё один путь сквозь лёд. Наконец, мы считаем, что удары метеоритов могут разламывать такие слои льда большими трещинами, позволяя жидкой воде вытекать из недр. Когда эта вода замерзает, она создает новую поверхность — это процесс, который астрономы называют обновлением поверхности. (Он, кстати, объясняет редкость кратеров на поверхности «Старой» Европы.) Любая из этих возможностей может дать живым системам контакт с излучением звезды, и мы предполагаем, что начнётся эволюция какого-то процесса наподобие фотосинтеза, чтобы организмы могли воспользоваться этой энергией. Вообще, утверждения из предыдущего абзаца поднимают интересный вопрос, потому что, хотя и кажется, что в мирах с подповерхностными океанами жизнь сравнительно легко может пробиться сквозь слой льда, в нашей Солнечной системе нет свидетельств существования жизни на поверхности таких миров. Различие, которое мы провели между лунами и планетами, где океаны на первых поддерживаются в жидком состоянии за счёт приливного разогрева, вполне может оказаться очень важным. В других мирах может существовать какая-то ещё не открытая причина, по которой жизнь в таких мирах, как Новая Европа, не сможет мигрировать на поверхность. Например, может оказаться, что эти миры просто слишком далеки от Солнца, чтобы поддерживать жизнь на своей поверхности. В предыдущей главе мы увидели, что крупные «листья» могут компенсировать слабый приток энергии. Однако между океаническими микробами и крупными листьями может быть какой-то эволюционный шаг, который представляет собой своего рода «бутылочное горлышко», труднопреодолимое для живых систем. Или же, как вариант, процесс приливного разогрева может обладать каким-то пока неизвестным свойством, которое сдерживает переселение к поверхности. И, разумеется, существует вероятность того, что именно в этих мирах нашей Солнечной системы жизнь просто не возникла. Кроме того, поверхность «Старой» Европы подвергается интенсивной бомбардировке частицами с Юпитера. Этот поток достаточно силён, чтобы уничтожить любую жизнь на поверхности спутника, но он может проникнуть в лёд всего лишь на несколько дюймов. Это открывает возможность для существования «поверхностной» жизни на Европе в нескольких дюймах под верхней стороной льда, а не над ней. Такую скрытую жизнь нельзя было бы обнаружить при помощи наших современных космических зондов и телескопов. Есть ещё один факт, который может объяснить отсутствие жизни на поверхности спутников с подповерхностным океаном в нашей Солнечной системе, и он связан с тем, что нам известно о пищевых сетях в океанах Земли. Если исключить экосистемы в горячих источниках срединно-океанических хребтов, вся пищевая сеть в океанах нашей планеты поддерживается за счёт солнечного света. В основании цепочек сети находятся микроскопические организмы вроде фитопланктона, которые используют фотосинтез для преобразования энергии солнечного света в энергию, запасённую в органических молекулах. Несмотря на то, что солнечный свет может проникать в воду чуть меньше, чем на полмили (около 800 м), — это так называемая фотическая зона, — все остальные существа в море в конечном счёте потребляют энергию, запасённую в этих молекулах. Слой льда на Новой Европе воспрепятствовал бы образованию такой фотической зоны. Солнечный свет просто не смог бы проникнуть сквозь лёд в лежащую под ним воду. И НАСА, и Европейское космическое агентство рассматривают возможность запуска миссий, предназначенных для непосредственного отбора проб и изучения тёмного материала, который появился из трещин на Европе. Для этого потребуется спускаемый аппарат со сложным устройством для химического анализа, очень похожий на марсоход «Кьюриосити», который в настоящее время находится на Марсе. В конце концов, возможно, потребуется пробурить лёд на Европе, чтобы взять пробу воды под ним. Если зонд обнаружит там живые организмы, то мы сможем начать анализировать эволюционную цепочку, которая их породила. Если такой зонд окажется пустым, это будет свидетельствовать о том, что на разогретых приливами мирах с подповерхностными океанами жизни развиваться сложнее, чем мы полагаем в настоящее время. В любом случае к вопросу о том, почему на поверхности этих миров нет жизни, следует подходить путём сбора новых данных, а не путём пустых рассуждений. С другой стороны, данные миссии «Европа» могут рассказать или, напротив, не скажут нам ничего определённого о жизни в мире, подобном Новой Европе, которая является планетой, а не спутником. Как и в случае большей части анализов экзопланет, здесь возникает много вопросов, на которые в настоящее время у нас нет чёткого ответа — этого момента мы вновь коснёмся в главе 17. Разум и технологии Учитывая то, как развивается многоклеточная жизнь вокруг океанских гидротермальных источников на Земле, разумно предположить, что многоклеточная жизнь может эволюционировать и в горячих источниках океанов на Новой Европе, и нам снова придётся признать, что мы не знаем, увидим ли мы там ещё и разумную жизнь. Однако, предположив, что разум и технологии действительно развиваются, мы можем строить предположения о том, какая цивилизация может возникнуть в условиях подповерхностного океана. Как и на Айсхейме, камни на дне океана и материалы, выбрасываемые горячими источниками, станут источником металлов и химических соединений, необходимых для поддержки технологий. Точно так же, как колесо характеризует технологию Земли, а труба — технологию Айсхейма, технологию Новой Европы характеризует воздушный шар как важнейшее приспособление для передвижения по этому миру. Воздушный шар, наполненный газом (или, что более вероятно, жидкостью, менее плотной, чем окружающая вода), мог бы поднимать жителей Новой Европы над твёрдой поверхностью ядра их планеты и позволил бы им исследовать свою планету. Мы ожидали бы, что вначале их передвижение будет направлено в стороны, то есть главным образом параллельно поверхности ядра. Жители Новой Европы нанесли бы на карты вид сверху на поверхность твёрдого ядра своего мира почти так же, как европейские моряки в эпоху географических открытий исследовали поверхность океанов Земли. Однако они постепенно обратили бы внимание на подповерхностный океан сверху над ними. Единственной технологией, которая им понадобится для этого, будут всё более и более лёгкие жидкости, которыми они будут наполнять свои «воздушные шары». И далее они, разумеется, наткнулись бы на лёд. Что случилось бы на Земле, если бы на ранних этапах освоения космоса нам встретилось препятствие, которое мешало бы нам двигаться дальше вверх? В космологии греков существовал именно такой барьер: твёрдая хрустальная сфера, вращение которой перемещало по небу Луну. Стали бы жители Новой Европы строить свою космологию на основе такой концепции и остановились бы, удовлетворённые тем, что достигли пределов своей вселенной? Или вместо этого они решили бы проложить туннель в слое льда, чтобы посмотреть, насколько далеко его можно протянуть? Можно представить себе серию событий на Новой Европе, которые образуют своего рода зеркальное отражение того, что происходило на Земле. Главное отличие состоит в том, что, если отдельные учёные на Земле сосредоточились на том, чтобы заглянуть внутрь нашей планеты ради понимания её природы, учёные на Новой Европе станут смотреть вверх, в слой льда. В 20 веке была разработана наука сейсмология, которая дала нам представление о внутреннем строении Земли. Точно так же учёные на Новой Европе могли бы разработать способ использования звуковых волн для составления карты слоя льда и, что ещё важнее, обнаружить, что он не простирается наружу до бесконечности, а вместо этого обладает конечной толщиной. Земные учёные также провели бурение на Земле. Самая глубокая из всех сделанных нами — Кольская сверхглубокая скважина неподалёку от Мурманска в России. Эта скважина пробурена на 7,5 миль (12 км) вглубь Земли. Если бы у жителей Новой Европы была аналогичная технология, они, вероятно, смогли бы добраться до поверхности льда, просто пробурив его вверх — по крайней мере, если бы его толщина была такой же, какую мы ожидаем для спутника Юпитера Европы.
Выполнению этой задачи способствовало бы не только любопытство. Достижение поверхности льда также могло бы нести в себе огромные технологические и экономические преимущества, поскольку оно позволило бы жителям Новой Европы использовать энергию, излучаемую их звездой. Точно так же, как мы используем геотермальную энергию для выработки электроэнергии и подачи тепла, они могли бы установить на льду солнечные коллекторы, преследуя те же самые цели. Можно даже представить себе «гонку к поверхности» между цивилизациями, привязанными к разным горячим источникам — аналог космической гонки XX века на Земле. Мы можем представить себе энергетические станции на поверхности льда, окружённые солнечными коллекторами и соединённые длинными кабелями с дном океана. Мы даже можем провести аналогию между жителями Новой Европы, эксплуатирующими поверхность льда, и людьми, эксплуатирующими околоземное пространство. Для людей основные экономические преимущества этой среды в настоящее время заключаются в осуществлении связи и навигации, хотя предлагались также проекты огромных солнечных коллекторов, выведенных в космос. Жители Новой Европы, набранные в штат своих поверхностных энергетических станций, должны быть защищены от космического вакуума или газовой атмосферы своей планеты точно так же, как люди на Международной космической станции должны быть защищены от суровых условий, в которых они находятся. По той же причине значительная часть наших космических исследований осуществляется с помощью беспилотных спутников. Возможно, жители Новой Европы пошли бы по аналогичному пути — заселили бы поверхность своего мира машинами и роботами, удовольствовавшись тем, что они сами остались в своей комфортной домашней обстановке на дне океана. Или, возможно, они продолжили бы смотреть вверх, на новооткрытые звёзды, и решили бы продолжить исследования, как это сделали люди. Для этого им пришлось бы преодолеть множество препятствий — даже просто достичь поверхности льда было бы сложно, а для создания чего-либо, напоминающего пусковые установки, потребовалось бы много ресурсов, которые нужно было бы доставить на очень большое расстояние. Возможно, лучшей аналогией было бы создание людьми постоянной базы на Луне у Земли. Однако на бумаге у нас уже есть планы такого объекта, и нет никаких причин считать жителей Новой Европы менее предприимчивыми, чем мы сами. Интересно порассуждать о том, как жители Новой Европы могли бы относиться к освоению космоса и колонизации планет. Долгие годы люди мечтали найти возле другой звезды «другую Землю», которую мы могли бы колонизировать и сделать вторым домом для людей. Это была бы каменная планета, где на поверхности находится жидкая вода в стабильном состоянии — то, что в главе 9 мы называем миром Златовласки. Мы уже нашли несколько десятков таких планет, хотя Земля — единственная в нашей солнечной системе. Покрытые льдом океанические миры понравились бы жителям Новой Европы гораздо больше, чем планеты земной группы, которые нравятся людям. Учитывая, что в нашей Солнечной системе сушествует, как минимум, пять таких миров — Европа, Ганимед, Каллисто, Титан и Энцелад, — она может оказаться более пригодной для жизни скорее для них, чем для людей. Таким образом, они смогли бы добиться гораздо большего успеха в колонизации планет, чем люди, и смогли бы сделать это быстрее. Майк и Джим Майк: Помнишь, Атон 112 проводил семинар по верхним слоям океана несколько лет назад? Джим: Ага, у него была идея, что можно исследовать ледяной потолок, посылая звуковые волны и прислушиваясь к их отражениям. М.: Ну, оказывается, он получил финансирование для своего проекта. И это ещё не всё — он нашёл такое место, где, как он утверждает, лёд тонкий, и действительно просверлил его насквозь! Дж.: И что же он нашёл? М.: Ничего. Дж.: Что ты имеешь в виду под словом «ничего»? М.: То и имею — он утверждает, что надо льдом находится вакуум. Дж.: Чушь какая-то. Он, что, не проходил курс общей философии? Всем же известно, что природа не терпит пустоты. И жизнь никогда не смогла бы выжить в вакууме. М.: Давай взглянем правде в глаза — там не может быть ничего, кроме льда. Дж.: Ну да, только лёд, лёд, лёд на всём пути вверх. 8 НЕПТУНИЯ: ВОДА, ВОДА, КРУГОМ ВОДА Вы плывёте в маленькой лодке. Вода раскинулась до самого горизонта, куда бы вы ни взглянули, и поскольку вы уже бывали на этой планете раньше, вы знаете, что, куда бы вы ни поплыли, вид будет точно таким же. Несколько тонких белых облаков плывут над вашей головой, но вы помните, что они могут собираться во внезапные штормы. Над вами пролетает несколько птиц, похожих на альбатросов и принадлежащих к виду, который овладел искусством защиты своих яиц в этой среде: он оставляет их плавать на поверхности воды. Под килем можно заметить косяки рыб, и вы знаете, что где-то глубоко внизу скрываются гигантские хищники, которые ими питаются. Гораздо дальше внизу, в 100 милях (160 км) под корпусом вашей лодки, сильное давление прессует молекулы воды в странные формы льда. Это Нептуния. * * * Мы продолжаем наше исследование покрытых водой миров с каменистой мантией и металлическим ядром, и рассматриваем экстремальный пример: мир с океаном жидкой воды и вообще без суши. Неудивительно, что такие миры существуют и уже открыты. Планета под названием Глизе 1214 b, которую мы подробно обсудим в главе 14, является одной из таких. Расположенная в 40 световых годах от Земли, она получила от астрономов прозвище «Водный мир», поскольку напоминает одноимённый научно-фантастический фильм 1996 года. Слой жидкой воды, покрывающий её поверхность, может достигать глубины 100 миль, представляя ещё одну среду обитания в нашем обзоре воображаемой жизни. Мы будем немного более официальными, чем наши коллеги, охотящиеся за планетами, и назовём наш воображаемый водный мир Нептунией в честь греческого бога моря[5]. Первое, что мы можем сказать о Нептунии — для того, чтобы быть водным миром, она должна находиться в обитаемой зоне своей звезды — в той области, где излучение звезды имеет достаточную интенсивность, чтобы не допустить замерзания океанов. И действительно, если бы океан Нептунии замёрз на поверхности, она была бы похожа на мир, который в предыдущей главе мы назвали Новой Европой, а если бы её океан промёрз до дна, Нептуния была бы похожа на мир, который мы назвали Айсхеймом в главе 6. Это подчёркивает тот момент, на котором мы уже не раз заостряли внимание: водные миры бывают разных форм, и всегда есть вероятность того, что одна форма может превратиться в другую. Чтобы понять, как мог возникнуть мир вроде Нептунии, мы можем напомнить себе о том, как образовались океаны на Земле. Во время первоначального расплавления планеты наверх всплыли самые лёгкие материалы. Это материки. Этого материала хватило лишь для того, чтобы покрыть примерно четверть поверхности Земли, так что в результате между большими массивами суши образовались глубокие котловины. Представьте, что котловины — это ванны, ожидающие наполнения. Вода, наполнявшая их, поступала из трёх источников: это недра Земли (при помощи вулканов), астероиды и кометы. Точный процент воды на Земле, полученный из каждого из них, остаётся предметом споров среди учёных, но конечным результатом является то, что ванны были заполнены, но не до самых краёв. Этого не должно было случиться. Если бы Земля получила примерно в пять раз больше воды, чем ей досталось, то все континентальные районы, в том числе и гора Эверест, оказались бы под водой, а Земля стала бы планетой, похожей на Нептунию. Количество жидкой воды, которая накапливается на поверхности планеты, зависит от множества факторов: сколько воды находится в туманности, из которой образуется планета, сколько этой воды попадает на планету, каковы масса и сила притяжения планеты, и, конечно, её температура. Однако, если помнить наше утверждение из главе 1 о количестве и разнообразии планет в галактике, мы считаем вполне возможным предположить, что будет обнаружено множество миров, подобных Нептунии. В качестве отступления отметим, что в начале истории нашей Солнечной системы произошла реорганизация орбит внешних планет, которая нарушила орбиты комет и астероидов и направила их к Земле. Мы не знаем, всегда ли происходит такая перестройка при формировании планетных систем, но иногда она происходит совершенно определённо. В нашей системе дождь из комет и астероидов никогда не прекращался; он просто уменьшался со временем. Масса Земли увеличивается примерно на 40 тонн (36 метрических тонн) каждый день по мере того, как космический материал сталкивается с планетой, сгорает в атмосфере и оседает на землю в виде мелкой пыли.
Перейти к странице:
Подписывайся на Telegram канал. Будь вкурсе последних новинок!