Поиск
×
Поиск по сайту
Часть 3 из 6 В начало
Для доступа к библиотеке пройдите авторизацию
Коперник и гелиоцентрическая система мира К началу шестнадцатого столетия геоцентрическая система Птолемея настолько укоренилась в западной культуре, что поставить ее под сомнение буквально означало подвергнуть свою жизнь реальной опасности. Со времен Древней Греции христианство охватило всю Европу и одно из его краеугольных учений состояло в том, что бог сотворил Вселенную за семь дней. Таким образом, представление о том, что Земля находится в центре мироздания, казалось естественным – почему бы не поместить свое творение в центр всего действия и не создавать этих проблем? Попытки оспаривать эту догму, намеки на то, что все на самом деле не совсем так, рассматривались как акт ереси. Ученые-мусульмане периода Средневековья не были столь жестко связаны с подобными догмами и уже в начале 1050 года нашей эры начали искать бреши в геоцентрической концепции Птолемея. Тем временем в Европе уже в XVI веке польский математик по имени Николай Коперник начал осознавать, что для объяснения ретроградного движения планет нет никакой необходимости в эпициклах и деферентах. Все, что для этого нужно, – это поместить Солнце в центр всей системы, а Землю рассматривать всего лишь как одну из планет, вращающуюся вокруг него. Так появилась гелиоцентрическая модель Вселенной. Объяснение ретроградного движения планет с точки зрения системы Птолемея и Коперника Наблюдаемое ретроградное движение Марса тогда объяснялось бы как просто следствие того, что Земля «перекрывает» эту планету в нашем перемещении вокруг Солнца. При движении в направлении Марса будет казаться, что эта планета движется в одном направлении, но как только мы промчимся мимо нее, будет казаться, что она отдаляется от нас по мере того, как сами мы отлетаем от нее. В первом десятилетии XVI века Коперник начал излагать свои идеи письменно, тайно передавая копии трудов верным и надежным друзьям. К началу 1532 года он был уже уверен в правильности своих представлений, но не хотел выставлять труды на суд публики из-за страха перед возможным обвинением. Существует мнение (хотя оно является предметом жарких споров) что сам Коперник увидел рукопись своего законченного труда, только находясь на смертном одре. Согласно преданию, успокоенный заверениями о том, что его идеи наконец-то станут достоянием общества и гласности, он мирно скончался в 1543 году. Его труд – De revolutionibus orbium coelestium («О вращении небесных сфер») – вероятно, одна из самых важных книг, когда-либо написанных в истории человечества. Книга Коперника стала источником кризиса в теологии. К концу шестнадцатого столетия интеллектуальную эстафету принял итальянский монах Джордано Бруно, который утверждал не только то, что Земля вращается вокруг Солнца, но и то, что звезды – это всего лишь отдаленные подобия нашего Солнца со своими планетами и, возможно, собственной жизнью. В 1600 году этот гений был сожжен у позорного столба, а некоторые историки предполагают, что его астрономические взгляды были лишь одним из его многочисленных «интеллектуальных преступлений». Для решения этих споров, однако, не было необходимых доказательств, которые могли раз и навсегда подтвердить, живем мы в геоцентрической или гелиоцентрической Вселенной. Однако одному датскому астроному удалось сделать все возможное, чтобы найти выход из этого положения. Он предложил гибридную модель, сочетающую в себе обе системы. Тихо Браге Датский астроном Тихо Браге представлял собой воплощение истинного эксцентрика. В течение большей части своей взрослой жизни он щеголял медным носом – в возрасте двадцати лет он утратил кончик своего носа от удара шпаги во время дуэли, затеянной из-за математики. Некоторые историки даже утверждали, что Уильям Шекспир изобразил в образе Гамлета Тихо Браге, а герои Розенкранц и Гильденстерн, конечно, позаимствовали свои имена у двоюродных братьев Браге. Возможно даже, что вся драма «Гамлет» является разработкой аллегории битвы между геоцентрической и гелиоцентрической моделями Вселенной, где герой Клавдий назван по имени Клавдия Птолемея. Но что мы знаем наверняка, так это то, что истинной страстью Браге была астрономия, и именно в ней он достиг подлинного величия. Браге выполнил более точные измерения параметров небесной сферы по сравнению со всеми, кто это делал до него. Датский король подарил ему маленький остров Гвен (теперь часть Швеции) вместе с большой суммой денег для строительства гигантской астрономической обсерватории, которую следовало соорудить на этом острове. Браге назвал обсерваторию Ураниборгом, что значит «Замок Урании» – дочери Зевса и музы астрономии. Социальный календарь в Ураниборге был почти также примечателен, как производившиеся в ней астрономические наблюдения. Браге нанял шута – карлика по имени Джепп, который имел обыкновение прятаться под столами и выпрыгивать оттуда, удивляя гостей. Он также содержал у себя при обсерватории прирученного лося, который плохо кончил, когда, сделав глоток из открытого бочонка с пивом, отравился и, упав замертво, скатился вниз по лестнице. Браге ожидала такая же несчастная участь. Участвуя на банкете с обильным пиршеством в Праге в 1601 году, он отказался покинуть застолье, чтобы сходить в туалет, несмотря на то, что потребил огромное количество алкоголя. Он скончался одиннадцать дней спустя от уремии – болезни, связанной с чрезмерной концентрацией мочевины в крови. У него попросту разорвался мочевой пузырь. Однако до своей безвременной кончины в пятьдесят четыре года, работая в Уринборге, Браге тщательно описал движения звезд и планет, используя секстанты и квадранты – механические инструменты, с помощью которых проводились измерения углов между небесными телами. Многие его измерения достигали точности в 1/60 часть градуса. Это привело его к компромиссу между геоцентрической и гелиоцентрической моделями. Он не мог заставить себя поверить в то, что нечто столь громоздкое и огромное, как Земля, движется, поэтому в его гео-гелиоцентрической модели Вселенной Солнце и Луна вращались вокруг Земли, а уже планеты – вокруг Солнца. Подобно птолемеевским эпициклам, именно это являлось причиной ретроградного движения планет. Тихо Браге создал гибридную модель Вселенной, в рамках которой Земля все еще занимает центральное положение, но некоторые планеты вращаются вокруг Солнца По крайней мере, на бумаге. Между тем убедительных доказательств, которые позволили бы с уверенностью утверждать, какая из трех моделей – Птолемея, Коперника или Тихо Браге – правильно описывала реальное положение дел во Вселенной, в которой мы живем, все еще не существовало. Но через какое-то время один голландский мастер, изготовитель очков, сделал случайное открытие, которое навсегда изменило астрономию. Изобретение телескопа Вплоть до этого времени все астрономические наблюдения проводились невооруженным глазом, а также при помощи секстантов и квадрантов. Однако в 1608 году голландец Ханс Липпершей создал первый в мире телескоп, подав заявку на патент на устройство «для рассматривания вещей и предметов, находящихся вдали, но так, как будто они находятся вблизи». Остается неясным, был ли он на самом деле первым, кто соорудил такой инструмент, но история часто приписывает ему это открытие. Многие прорывные открытия в истории науки, такие, например, как момент, заставивший Архимеда вскрикнуть «Эврика!», или ньютоновское падение яблока, сопровождаются рассказами о внезапном озарении – историями, которые носят скорее апокрифический характер. Изобретение телескопа не исключение. Рассказывают, что миг озарения Липпершея наступил, когда он увидел, как двое детей играют с коробкой старых линз в его мастерской. Оказалось, что если смотреть на находящийся вдалеке флюгер через две линзы одновременно, то объект, на который смотрят, внезапно начинает казаться значительно больше. Учитывая этот эффект, Липпершей сконструировал устройство, которое могло увеличивать видимый размер объектов в три раза. Несколько лет спустя греческий ученый Джованни Демисиани назвал это новое изобретение «телескопом» от греческого слова «далекий» и «смотреть» или «видеть». Но раскрыть истинный потенциал нового изобретения удалось итальянскому математику, в результате чего была опровергнута очень старая идея. Галилей и его наблюдения с помощью телескопа
В 1608 году итальянский ученый Галилео Галилей работал в Падуе, занимаясь преподаванием в местном университете. Во время своего путешествия в Венецию он столкнулся с экземпляром недавно изобретенного голландского устройства, как лесной пожар распространявшегося по всей Европе. Он взялся усовершенствовать это изобретение, и очень скоро появился телескоп с увеличением в восемь раз (по сравнению с первоначальным увеличением в три раза, которого достиг Липпершей). Вскоре он сконструировал устройство, способное давать увеличение более чем в тридцать раз. Очень скоро Галилею стало ясно, что мы живем совсем не в геоцентрической Вселенной. Птолемей ошибался. Седьмого января 1609 года ученый направил свой телескоп в сторону Юпитера и увидел три маленьких небесных объекта вокруг планеты. В течение недели он обнаружил и четвертый объект. Сегодня четыре крупнейших спутника Юпитера получили прозвище «галилеевых спутников», названных так в честь самого Галилея. В данном случае были обнаружены четыре небесных тела, которые совершенно очевидно не вращались ни вокруг Земли, ни вокруг Солнца. Решающий довод был получен в сентябре 1610 года, когда Галилей увидел, что у Венеры, точно так же, как и у Луны, имеются фазы. Иногда она выглядела как «полный шар», а в другое время как полумесяц. Размеры Венеры также менялись, как будто иногда она становилась ближе к нам, а затем отдалялась. Если бы оба небесных тела – и Венера, и Солнце, вращались вокруг Земли, как предполагал Птолемей, мы никогда не узнали бы, что у Венеры есть свои фазы. Система Птолемея не позволяет Венере занимать положение между Землей и Солнцем, – построение, которое должны принять планеты, чтобы мы могли увидеть фазы Венеры. В рамках гео-гелиоцентрической системы Тихо Браге и системы Коперника, когда Венера располагается между нами и Солнцем, мы едва ли можем видеть ее освещенной, так как большая часть солнечного света падает на противоположную сторону этой планеты. Повернутая к нам сторона планеты полностью залита светом тогда, когда она находится на самом большом расстоянии от нас. Именно в этом и состояло доказательство, которое наконец-то опровергло древнюю птолемеевскую геоцентрическую модель Вселенной. Однако переход на сторону гелиоцентризма все еще грозил большими неприятностями. Когда Галилей привел доводы в пользу системы Коперника, он вызвал волну гнева со стороны духовенства. Те выступали за систему Тихо Браге, так как она позволяла, с одной стороны, объяснить существование фаз Венеры и в то же время отвечала потребностям религии в идее центрального положения Земли. В 1616 году святая инквизиция объявила идею гелиоцентризма как прямое противопоставление Священному Писанию. А в 1633 году начался суд над Галилеем, которого объявили виновным в ереси. В качестве наказания ученого приговорили к пожизненному домашнему аресту. Галилей провел эти годы за написанием важных книг, посвященных менее противоречивым областям науки, и в 1642 году умер в возрасте семидесяти семи лет. В конце концов церковь была вынуждена оправдать Галилея, но произошло это только в 1992 году! Галилей также занимался рисованием лунных гор и использовал длину их теней для определения их высоты. Его находки открыли миру лунные горы с более высокими вершинами, чем кто-либо мог ожидать. Будучи первым, кто увидел кольца Сатурна, он описал их как «уши», выпячивающиеся по обеим сторонам планеты. Ему удалось даже увидеть пятна на поверхности Солнца и обнаружить, что наш Млечный Путь представляет собой не просто газообразное облако, а плотное скопление звезд. Иоганн Кеплер и его планетарные законы Немецкий математик Иоганн Кеплер был одним из первых и самых ярых сторонников коперниканской модели Вселенной, которым он стал еще до наблюдений и открытий, сделанных Галилеем. Назначенный ассистентом Тихо Браге в 1600 году, Кеплер жаждал описать математические законы, управляющие движением планет вокруг Солнца. Ему было позволено использовать некоторые из наблюдений Браге, но датчанин бдительно охранял свои данные. Тот факт, что всего через год Браге умер, а Кеплер благополучно унаследовал все его работы, заставил историков назвать такой ход событий грязной игрой. В 1901 году тело Тихо Браге было эксгумировано, и в его останках обнаружили следы ртути. Действительно ли он скончался от разрыва мочевого пузыря? Или же знаменитого астронома отравил Кеплер, чтобы завладеть исключительно ценными и никем не превзойденными по качеству астрономическими каталогами? Как бы то ни было, все, что нам известно о смерти Тихо Браге, мы знаем только от Кеплера. Однако повторная эксгумация тела Браге, произведенная в 2010 году, показала, что концентрация ртути в нем была недостаточна, чтобы привести к смертельному исходу. В течение десятилетия после ухода Браге Кеплер использовал его наблюдения для формулировки своих знаменитых трех законов движения планет. Первый закон Кеплера. Планеты вращаются по эллиптической траектории, в одном из фокусов которой находится Солнце. Кеплер видел, что планеты вращаются вокруг Солнца не точно по круговой траектории, как предполагали в древности и даже Коперник. Вместо этого они описывают овальную фигуру, называемую эллипсом. У этой геометрической формы имеются два фокуса, или центра, – математически очень важных точек внутри замкнутой кривой. Солнце находится в одной из этих точек. Второй закон Кеплера. Прямая, соединяющая Солнце и планету, за равные промежутки времени всегда описывает равные площади. Следствием эллиптической формы орбит вращения планет является то, что они в разные моменты времени находятся ближе или дальше от Солнца. Вместе с тем Кеплер заметил, что линии, проведенной между Солнцем и планетой, требуется одно и то же время для покрытия одной и той же площади пространства. Проще говоря, при приближении к Солнцу скорость планет увеличивается, а при отдалении – уменьшается. Третий закон Кеплера. Квадрат периода обращения планеты прямо пропорционален кубу ее расстояния от Солнца. Согласно законам Кеплера орбиты планет имеют эллиптическую форму, и чем ближе планета находится к Солнцу, тем выше скорость ее движения Фактически это означает, что чем дальше планета находится от Солнца, тем больше времени ей требуется для совершения оборота вокруг него. В действительности эта закономерность находится в рамках здравого смысла – Меркурий вращается вокруг Солнца быстрее всего, так как он должен описать самый маленький эллипс. Сатурну требуется куда больше времени, поскольку ему нужно пройти большее расстояние. Величайшим озарением проницательного ума Кеплера стало установление точной математической взаимосвязи между этими двумя вещами. Анализируя точные наблюдения Тихо Браге, Кеплер заметил, что время обращения планет, взятое в квадрате (умноженное само на себя), связано с расстоянием планеты от Солнца, возведенным в куб (дважды помноженное на само себя). Законы Кеплера носили эмпирический характер: они опирались на анализ непосредственных наблюдений, а не основывались на некоторых основополагающих теоретических построениях, объясняющих, почему планеты вращаются вокруг солнца. Это более фундаментальное понимание законов придет позже, в 1666 году, когда один английский математик, вынужденный оставить Кембридж из-за чумы, как сообщалось, сидел в саду своей матери, и на его голову упало яблоко. Исаак Ньютон и гравитация Кажется, что в рассказе о Ньютоне и яблоке имеется зерно истины, но яблоко никогда не падало ему на голову. По крайней мере, если верить авторитетной биографии, озаглавленной «Мемуары о жизни сэра Исаака Ньютона», изданной в 1752 году. Автор этой биографии – Уильям Стакли – сидел за чаепитием с Ньютоном в саду после обеда, когда знаменитый ученый рассказал ему о том, что теория гравитации пришла ему в голову в тот момент, когда он наблюдал за падающим на землю яблоком. Ключевым открытием Ньютона является то, что каждый объект во Вселенной испытывает силу притяжения к любому другому объекту во Вселенной. Яблоко испытывает притяжение к Земле, поэтому оно падает. И останавливается, прекращая дальнейшее падение, только по единственной причине – оно ударяется о землю. Ньютон пришел к мысли, что если он сможет вытолкнуть яблоко на достаточно большую высоту и с достаточно большой скоростью, то оно останется в свободном падении где-то около Земли и поверхность планеты не окажется на его пути. Это яблоко начнет вращаться вокруг Земли. Дальнейшим прорывом в его рассуждениях стала догадка о том, что Луна вращается вокруг Земли по той же причине, по которой яблоко падает, – Луна находится в свободном падении, не имея никаких преград на своем пути. И все из-за того, что между двумя объектами действует сила гравитационного притяжения. В 1687 году Ньютон опубликовал свои идеи о гравитации в книге под названием «Philosophiae Naturalis Principia Mathematica», или Математические начала натуральной философии (которые часто сокращенно называют «Начала»). Книга содержит много других прорывных идей, имеющих огромное значение, в том числе и знаменитые три закона движения. Ньютон утверждал в своей книге, что сила гравитационного притяжения между двумя объектами во всей Вселенной пропорциональна квадрату расстояния между ними. Это означает, что если вы удвоите расстояние между двумя объектами, то сила гравитационного притяжения между ними уменьшится в четыре раза. Утройте это расстояние, и она уменьшится в девять раз. Что позволило его идеям оказать столь мощное влияние на науку, так это то, что он использовал и свои универсальные законы гравитации, и законы движения для доказательства законов планетарного движения Кеплера. В действительности он говорил: «Я знаю, почему планеты вращаются вокруг Солнца, и могу это доказать, потому что мои идеи дают те же результаты, что и у Кеплера». Возьмите второй закон Кеплера, который гласит, что линия, проведенная от Солнца до планеты, покрывает равные площади за равные промежутки времени. Иначе говоря, планеты ускоряются при приближении к Солнцу и замедляются при отдалении от него. Ньютон дал объяснение такому поведению планет. Сила гравитационного притяжения между двумя объектами тем больше, чем ближе эти объекты находятся по отношению друг к другу, и тем меньше, чем они дальше друг от друга. Когда планета находится вблизи Солнца, она испытывает более сильное притяжение, в результате чего ее движение ускоряется; и наоборот, по мере увеличения расстояния между ними сила их притяжения уменьшается, а движение планеты замедляется. Фундаментальный труд Ньютона, однако, мог и не дойти до публикации. Королевское общество растратило свой предназначенный для публикаций бюджет на издание провальной книги «История рыб». Тогда в это дело вмешался астроном Эдмунд Галлей, заплатив за публикацию труда Ньютона из собственных средств. Таким образом, он обеспечил одной из важнейших книг всех времен, научной и не только, выход в свет.
Перейти к странице:
Подписывайся на Telegram канал. Будь вкурсе последних новинок!