Часть 25 из 191 В начало
Для доступа к библиотеке пройдите авторизацию
Эту разницу проще понять на примерах, где данные величины расходятся.
Для начала возьмем случай, когда признак в высокой мере наследственный, но при этом имеет низкую наследуемость; данный пример предложил философ Нед Блок{423}. В какой мере наследуется признак «у человека в среднем пять пальцев на руке»? В огромной. Этот признак наследственный. А как насчет вариаций вокруг этого среднего, как влияют гены на эти отклонения? Совсем немного. Те случаи, когда у человека не пять пальцев, а как-то иначе, в основном относятся к травмам. Получается, что среднее число пальцев на руке – это признак высоконаследственный, но с низкой наследуемостью, потому что генами не объяснишь индивидуальную изменчивость в числе пальцев. Или ту же мысль выразим иначе. Перед вами стоит задача определить, какая у особи конечность – пятипалая рука или копыто? Тут поможет информация о генах данной особи, по которым узнается ее видовая принадлежность. Но вот задача меняется, и нужно определить, сколько пальцев на руке у конкретного человека – четыре или пять – и какова надежность ответа. В данном случае секвенирование генома окажется бесполезным, гораздо полезнее будет информация, что этот человек любит орудовать циркулярной пилой с завязанными глазами.
Теперь рассмотрим обратный пример, когда признак имеет низкую наследственность, но высокую наследуемость. Почему люди с большей вероятностью наденут сережки, чем шимпанзе, и какая тут непосредственная связь с генами? Почти никакой. Теперь учтем индивидуальные человеческие различия данного признака: насколько гены предопределяют ношение сережек у учеников старших классов на танцах в 1958 г.? В очень высокой степени. Если у участника танцев две Х-хромосомы, то, скорее всего, у него будут сережки, а если имеется Y-хромосома, то сережек более чем вероятно не будет. Поэтому в целом гены оказывали ничтожное влияние на пристрастие к сережкам среди американцев в 1958 г., но зато с большой вероятностью определяли, будут ли у данного конкретного человека в ушах сережки. Следовательно, в то время и в том месте ношение сережек характеризовалось низкой наследственностью, но высокой наследуемостью.
Надежность оценок наследуемости
Теперь мы усвоили разницу между наследственностью и наследуемостью признаков и поняли, что людям интереснее последнее: сравнивать себя с соседом, а не с диким зверем. Мы упомянули, что целый ряд личностных характеристик имеет уровень наследуемости 40–60 % – это означает, что примерно половина вариабельности признака зависит от генов. И наконец, в этом параграфе мы рассмотрим, как сама методология исследований приводит к завышению данных оценок[232]{424}.
Представим себе генетика, который отправился в пустыню изучать определенный вид растений. И он выяснил, что один из генов – скажем, 3127 – определенным образом регулирует рост у растений этого вида. Ген 3127 может быть представлен в трех вариантах – это аллели А, В и С. Так вот, растения с вариантом А вырастают до 1 см, с вариантом В – до 2 см, а с вариантом С – до 3 см[233]. Что нужно знать, чтобы с большой вероятностью предсказать рост растения? Очевидно, какой из аллелей – А, В или С – у него присутствует. Этими аллелями наш генетик в состоянии объяснить весь диапазон выявленной изменчивости высоты растений, т. е. он оценивает наследуемость в 100 %.
А тем временем за тысячи километров от той пустынной экспедиции развернулась другая – и другой генетик отправился изучать то же самое растение, но уже во влажные леса. В тех условиях ему встретились растения высотой 101, 102 и 103 см, и у них соответственно обнаружились аллели А, В и С. И этот генетик тоже сделает вывод о 100 %-ной наследуемости признака роста.
И вот теперь, как того требует сюжет, эти два генетика встретились на конференции и их постеры оказались рядышком. Первый призывал публику посмотреть на коллекцию одно-, двух- и трехсантиметровых образцов, а другой переманивал зрителей к своей – с высотами растений 101, 102 и 103 см. Но вот генетики объединили свои данные. А значит, после этого следует пересмотреть оценки наследуемости высоты, откуда бы ни происходили экземпляры данного вида. Можно узнать аллельный вариант (А, В, или С) гена 3127 у конкретного экземпляра или можно уточнить, откуда растение доставили. Что будет осмысленнее? Узнать место произрастания. Если изучаешь растения данного вида в двух разных обстановках, то выясняется, что наследуемость признака высоты стремится к нулю.
А теперь – внимание на сцену! Это очень важно: если ген изучается по выборке только из одной местности, то упускается возможность увидеть, как он работает в другой (иными словами, мы не узнаем, вдруг в иных условиях ген будет как-то иначе регулировать признак). И таким субъективным, искусственным образом преувеличится объем генетического вклада. Чем больше экземпляров из разных местообитаний окажется в выборке, тем больше будет обнаруживаться еще не встреченных эффектов окружающей среды, что тем самым снизит уровень наследуемости.
В своих исследованиях ученые прикладывают огромные усилия для контролирования условия среды, это необходимо, чтобы минимизировать влияние посторонних факторов, которые будут мешать надежной интерпретации результатов – например, все растения в выборке должны быть измерены в одно и то же время года. Оценки наследуемости вследствие этого завышаются, потому что вы не можете знать, как посторонние факторы повлияют на признак; возможно, они не такие уж и «посторонние»[234]. Следовательно, эти оценки говорят о том, какая часть изменчивости признака объясняется влиянием генов в данных условиях. И если исследование передвинется в другие условия, то уровень наследуемости снизится. Данную проблему отметил Бушар: «Приведенные выводы [о генетике поведения] можно, безусловно, распространить и на другие популяции, но лишь существующие в тех же диапазонах условий, что и исследованные»{425}.
В примере с растениями из пустыни и влажного леса мне пришлось сгустить краски, иначе не была бы очевидна бессодержательность раздельных оценок наследуемости. В действительности редко бывает так, что какой-то вид растений встречается и во влажном лесу, и в пустыне. В реальных ситуациях вы скорее встретите в одном влажном лесу растения высотой 1, 2 и 3 см, а в другом – высотой 1,1, 2,1 и 3,1 см. Тогда уровень наследуемости будет меньше 100 %, но все же близкий к ним.
Обычно гены отвечают за изрядную долю изменчивости признаков, потому что виды обитают в ограниченном диапазоне условий: капибару встретишь только в тропиках, а белых медведей – только в Арктике. Все рассуждения относительно завышения величин наследуемости актуальны лишь для гипотетических случаев, скажем, для вида, населяющего тундры и пустыни, существующего при различных плотностях популяции или ведущего и кочевой, и оседлый образ жизни в сельской местности или в каменных джунглях.
Да, мы говорим о человеке. При переходе от контролируемых экспериментальных ситуаций к полному диапазону условий местообитаний оценки наследуемости признаков у человека проседают больше, чем у любого другого вида. Просто задумайтесь, как уменьшилась оценка наследуемости признака «ношение сережек» с его гендерным разделением с того самого 1958 г.
А вот еще одно обстоятельство, усложняющее дело.
Взаимовлияние ген/среда
Вернемся к нашему растению. Представим, что с каждым из трех вариантов гена в среде А оно вырастает всегда до 1 см, а в среде В – всегда до 10 см. И если эти данные совместить, то получится нулевая наследуемость: среда целиком определяет изменчивость роста растения.
А теперь по-другому: поместим растение в среду А и получим распределение роста 1, 2 и 3 см; затем в среду В – и там тоже 1, 2 и 3 см. Наследуемость 100 %-ная, вся изменчивость объясняется генетическими вариациями.
В следующей гипотетической ситуации наше растение в среде А сможет вырасти до 1, 2 и 3 см, а в среде В – до 1,5, 2,5 и 3,5 см. Наследуемость получится между 0 и 100 %.
Но давайте рассмотрим совсем другой случай. В среде А рост 1, 2 и 3 см, а в среде В – 3, 2 и 1 см. И для этого случая весьма затруднительно говорить об уровне наследуемости, потому что в разных средах эффекты аллелей меняются на противоположные. Таким образом, перед нами пример центральной концепции генетики – взаимовлияния ген/среда, генов и среды. В соответствии с ней меняются не столько количественные, сколько качественные проявления гена. Вот простое изложение этой концепции. Вы изучаете определенную поведенческую реакцию в двух различных обстановках. И вас спрашивают: «В какой мере данная поведенческая реакция зависит от генов?» А вы отвечаете: «Это зависит от среды». Тогда вас спрашивают: «В какой мере данная поведенческая реакция зависит от среды?» И вы отвечаете: «Это зависит от генов». Здесь ключевым является словосочетание «это зависит», и оно выражает взаимовлияние генов и среды.
Приведу несколько классических примеров, относящихся к поведению{426}.
Болезнь фенилкетонурия возникает из-за мутации в одном-единственном гене. Если не вдаваться в детали, дело обстоит так: данная мутация портит фермент, который превращает фенилаланин – поступающее с пищей нейротоксичное вещество – в нечто безвредное. Поэтому, когда человек с фенилкетонурией ест обычную еду, то фенилаланин накапливается, что приводит к повреждениям в мозге. Но если больной сидит на «бесфенилаланиновой» диете с рождения, то с мозгом все в порядке. Подумаем теперь, как данная мутация влияет на работу мозга. Это зависит от режима питания человека. Какова роль диеты в развитии мозга? Это зависит от наличия данной (редкой) мутации.
Другой пример такого взаимовлияния генов и среды касается депрессии – недомогания, связанного с нарушением серотонинового баланса{427}. Есть такой ген, называется 5HTT, он кодирует транспортер, удаляющий серотонин из синапса. Так вот, один особый вариант (аллелей) этого гена увеличивает риск депрессии… но только если у человека была детская травма[235]. Спросим: каков риск получить депрессию, если у человека имеется тот особый вариант гена 5HTT? Это зависит от детских травм. Каков риск депрессии, если в анамнезе есть детская травма? Это зависит от присутствия того самого аллеля гена 5HTT (да еще от кучи других генов, но принцип, надеюсь, понятен).
Еще один пример связан с геном FADS2, он участвует в жировом обмене{428}. Один из аллелей этого гена ассоциирован с повышенным IQ, но только у тех, кого вскармливали грудным молоком. И мы снова можем увидеть ту же пару взаимозависимостей в системе ген/среда.
И последний пример: он приводится в важном исследовании, опубликованном в 1999 г. в журнале Science. Оно появилось в результате сотрудничества трех генетиков, изучающих поведение: первый – сотрудник Орегонского университета науки и здоровья, второй – Университета Альберты, а третий – Нью-Йоркского университета в Олбани{429}. Исследователи изучали линии мышей, которые различались генетическими вариантами, ассоциированными с поведенческими отклонениями – такими как тревожность и склонность к выработке зависимостей. Для начала ученые удостоверились, что линии мышей во всех трех лабораториях соответственно генетически идентичны. В каждой из лабораторий в клетках у мышей было крутящееся колесо, с его помощью проверяли мышиные поведенческие реакции.
Ученые постарались выравнять все условия, какие только можно. Например, одни мыши родились в лаборатории, а другие прибыли от производителей, поэтому рожденных в лаборатории покатали на автомобиле, чтобы имитировать процесс перевозки, – вдруг это важно? Животных тестировали в одном и том же возрасте, в один и тот же день, начинали эксперименты в один и тот же час по местному времени. Мышат переводили с материнского молока на общий стол одновременно, они жили в одинаковых клетках, спали на одинаковых соломенных подстилках, которые им меняли в одно и то же время. Их вынимали из клеток синхронно и одинаковое число раз, и лаборанты были в одинаковых перчатках. Были предусмотрены одинаковые еда, освещение и температура. Трудно вообразить более сходные условия, разве только трое ученых еще должны были быть однояйцовыми тройняшками, разлученными при рождении.
И что же в итоге наблюдалось? Некоторые аллели продемонстрировали мощный эффект взаимовлияния ген/среда: в разных лабораториях они сработали по-разному.
Вот, например, такой набор данных. Тестируется линия 129/SvEvTac на предмет влияния кокаина на активность. В Орегоне кокаин усилил активность мышей таким образом, что за 15 минут мышиные движения увеличили амплитуду на 667 см. В Олбани – на 701 см за, естественно, то же время. А в Альберте? Больше чем на 5000 см! Это примерно как если бы тройняшки, которые одинаково тренировались и питались, которые ведут одинаковый образ жизни, у которых одни и те же снаряжение и марки одежды, выполняли прыжки с шестом на разных стадионах, – при этом первый близнец взял бы высоту 5,49 м, второй – 5,51 м, а третий – аж 33 м!
Может, ученые не знали, что на самом деле творится у них в лабораториях, может, дела там велись как бог на душу положит? Но нет, вариабельность обстановки в каждой из лабораторий была низкой, условия оставались стабильными. И что еще важнее, другие линии мышей не показали такого взаимовлияния ген/среда, выдав единообразный результат во всех трех лабораториях.
И как же истолковать полученные различия? А вот как: многие варианты генов настолько чувствительны к окружающим условиям, что взаимовлияние генов и среды проявляется даже при минимальных внешних отклонениях, даже в таких надежно выравненных (но не абсолютно идентичных!) условиях, что были в тех лабораториях. Мельчайшие отклонения среды существенно изменили то, что делали гены.
У генетиков упоминать взаимовлияние ген/среда считается освященным веками клише{430}. Мои студенты закатывают глаза, когда я им об этом говорю. И я сам закатываю глаза, когда приходится им об этом говорить. Поэтому в соответствующих ситуациях сосчитайте до десяти, закройте глаза и оттарабаньте заученную фразу: «Если ген и среда взаимно влияют друг на друга, то трудно количественно оценить их относительный вклад в проявление конкретного признака». Отсюда следует весьма дерзкий вывод: бессмысленно спрашивать, что делает данный ген, нужно спрашивать, что делает данный ген в таких-то и таких-то условиях. Это было замечательно сформулировано уже упоминавшимся Дональдом Хеббом: «Фраза наподобие “признак А больше зависит от природы, чем от воспитания” по смыслу практически аналогична заявлению, что… “площадь прямоугольника больше зависит от длины, чем от ширины”». А суть заключается в том, что необходимо разобраться, от чего больше зависит изменчивость площадей в популяции прямоугольников – от длины или от ширины. И именно в популяции, потому что для каждого отдельного прямоугольника такой вопрос бессодержателен.
Итак, мы можем подытожить часть 2 этой главы несколькими ключевыми положениями:
а) Влияние гена на среднее значение признака (т. е. наследуется признак или не наследуется) отличается от влияния гена на наследуемость признака в группе особей.
б) Говоря о признаках с жесткой наследственностью – скажем, у признака «количество пальцев на руке человека» среднее значение узко определено как 5, – нельзя иметь в виду строгую генетическую детерминацию признака даже в этом очевидном со всех сторон случае. И все потому, что эффект работы гена формируется не только самим геном, но и контекстом, который регулирует эту работу.
в) Та или иная оценка наследуемости относится исключительно к тем условиям среды, в которых она была получена. Чем шире выборка условий, тем, по всей вероятности, будет ниже оценка наследуемости.
г) Взаимовлияние ген/среда проявляется всегда и всюду и может оказаться чрезвычайно заметным. Поэтому нельзя в действительности сказать, что «ген делает то-то и то-то», а только «ген делает то-то и то-то в данных условиях» – тех, в которых это действие изучалось.
Современные исследователи вовсю взялись за изучение взаимовлияния генов и среды{431}. Вот чудесный пример. Наследуемость различных признаков, характеризующих развитие умственных способностей у детей, весьма высока – для IQ она составляет около 70 %, – но только для детей из семей с высоким социоэкономическим статусом, а у детей из семей с низким СЭС она, напротив, довольно низкая, составляет примерно 10 %. Следовательно, условия высокого СЭС позволяют генам проявить свое влияние в полную силу, а в условиях бедности их действие ограничивается. Другими словами, гены практически не влияют на развитие интеллекта, если человек растет в нищете – ее издержки берут верх над генетикой[236]. Так же и с алкоголем: оценки наследуемости по признаку «употребление алкоголя» оказываются ниже у религиозных, чем у нерелигиозных людей. То есть гены не играют большой роли, если речь идет о человеке, принадлежащем религиозному сообществу с запретом на употребление алкоголя. На подобных показательных примерах нетрудно уяснить мощный потенциал классической генетики поведения.
Часть 3: Действительно, в какой мере гены определяют поведение (о котором здесь идет речь)?
Объединение генетики поведения и молекулярной генетики
В генетике поведения наступил резкий подъем, когда подключились молекулярные методы, – после наблюдений за близнецами и приемными детьми, выявления их сходства и различий все занялись поиском генов, определяющих эти сходства и различия. И в результате применения данного мощного подхода были определены различные гены, связанные с поведенческими признаками. Но с оговорками, как у нас принято: а) не все выводы однозначно повторяются; б) эффект влияния генов обычно невелик (т. е. ген участвует в формировании признака, но не в значительном объеме); в) для большинства интересующих нас признаков доказано взаимовлияние ген/среда.
Изучение генов-кандидатов
Есть два подхода в поиске генов, существенных для того или иного признака: «кандидатный» и «полногеномный ассоциативный» (остаемся на линии!). В первом случае требуется список «подозреваемых», т. е. тех генов, связь которых с конкретным поведением уже известна. Например, если изучается поведение с участием серотонина, то очевидными кандидатами будут гены, кодирующие ферменты синтеза или разложения серотонина, затем вещества, удаляющие его из синапса, а также рецепторы серотонина. Выберите какой-нибудь один ген и изучите его работу с помощью, например, молекулярного приема, когда создаются линии мышей с тем или иным выключенным геном, или другого приема, когда создаются трансгенные линии мышей с дополнительной чужеродной копией гена. Можно сделать так, что эти манипуляции затронут лишь отдельные части мозга и сработают лишь в определенное время. А после можно будет наблюдать, какие появятся изменения в поведении. И когда вы убедитесь, что сдвиги определенно есть, то дальше задайтесь вопросом: в какой мере аллельное разнообразие данного гена объясняет индивидуальную изменчивость признака в человеческом поведении? Я начну данный раздел с темы, которая привлекла наибольшее внимание; она про хорошее и плохое, в основном про плохое.
Серотониновая система
Как гены, связанные с серотонином, могут повлиять на хорошие и дурные поступки? Самыми разными способами.
В главе 2 было ясно обрисовано, как низкий уровень серотонина вызывает импульсивное антисоциальное поведение. У людей с подобным поведенческим профилем регистрируется пониженный по сравнению со средним уровень продуктов распада серотонина в крови, а у животных – понижен сам уровень серотонина в лобной коре. И что более убедительно, препараты, снижающие «серотониновый фон» (уменьшающие либо количество серотонина, либо чувствительность серотониновых рецепторов), усиливают импульсивную агрессию, а те, которые этот фон поднимают, производят противоположный эффект.
Отсюда выводятся некоторые простые следствия – все, что приводит к снижению серотонина или его работы, должно приводить к росту импульсивной агрессии; это делают, в частности, все нижеперечисленные гены:
а) низкоактивные варианты гена триптофангидроксилазы (ТГ), которая участвует в синтезе серотонина;
б) высокоактивные варианты гена моноаминоксидазы-А (МАО-А), которая разлагает серотонин;
в) высокоактивные варианты гена транспортера серотонина (5HTT), который выводит серотонин из синапса;
г) варианты генов серотониновых рецепторов, которые имеют пониженную чувствительность к серотонину.